亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MASS: A Multisource Domain Adaptation Network for Cross-Subject Touch Gesture Recognition

计算机科学 人工智能 分类器(UML) 过度拟合 模式识别(心理学) 手势 人工神经网络 机器学习 域适应 线性判别分析 特征向量 语音识别
作者
Yunkai Li,Qing‐Hao Meng,Yaxin Wang,Tian-Hao Yang,Hui-Rang Hou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 3099-3108 被引量:4
标识
DOI:10.1109/tii.2022.3174063
摘要

Touch gesture recognition (TGR) plays a pivotal role in many applications, such as socially assistive robots and embodied telecommunication. However, one obstacle to practicality of existing TGR methods is the individual disparities across subjects. Moreover, a deep neural network trained with multiple existing subjects can easily lead to overfitting for a new subject. Hence, how to mitigate the discrepancies between the new and existing subjects and establish a generalized network for TGR is a significant task to realize reliable human–robot tactile interaction. In this article, a novel framework for Multisource domain Adaptation via Shared-Specific feature projection (MASS) is proposed, which incorporates intradomain discriminant, multidomain discriminant, and cross-domain consistency into a deep learning network for cross-subject TGR. Specifically, the MASS method first extracts the shared features in the common feature space of training subjects, with which a domain-general classifier is built. Then, the specific features of each pair of training and testing subjects are mapped and aligned in their common feature space, and multiple domain-specific classifiers are trained with the specific features. Finally, the domain-general classifier and domain-specific classifiers are ensembled to predict the label for the touch samples of a new subject. Experimental results performed on two datasets show that our proposed MASS method achieves remarkable results for cross-subject TGR. The code of MASS is available at https://github.com/AI-touch/MASS .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang@163.com完成签到,获得积分10
1秒前
1秒前
今天学习了吗完成签到 ,获得积分10
1秒前
3秒前
yimoyafan发布了新的文献求助10
7秒前
tejing1158完成签到 ,获得积分10
8秒前
Sept6完成签到 ,获得积分10
9秒前
cjh完成签到,获得积分20
14秒前
Jasper应助Zyy采纳,获得10
18秒前
26秒前
28秒前
GingerF应助科研通管家采纳,获得50
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
37秒前
40秒前
英俊的铭应助自由凌波采纳,获得10
42秒前
yuuu发布了新的文献求助10
43秒前
44秒前
深情安青应助Carol采纳,获得10
44秒前
47秒前
自由凌波发布了新的文献求助10
52秒前
CCccc完成签到,获得积分10
52秒前
情何以堪发布了新的文献求助10
54秒前
57秒前
科研通AI5应助yuuu采纳,获得10
1分钟前
1分钟前
高山七石发布了新的文献求助30
1分钟前
萤火虫88发布了新的文献求助10
1分钟前
香蕉觅云应助jdjd采纳,获得10
1分钟前
SciGPT应助蘇q采纳,获得10
1分钟前
情何以堪完成签到,获得积分10
1分钟前
1分钟前
完美世界应助风趣秋白采纳,获得30
1分钟前
1分钟前
jdjd发布了新的文献求助10
1分钟前
jdjd完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助高山七石采纳,获得30
1分钟前
英俊的铭应助萤火虫88采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851329
求助须知:如何正确求助?哪些是违规求助? 4150189
关于积分的说明 12856498
捐赠科研通 3898038
什么是DOI,文献DOI怎么找? 2142319
邀请新用户注册赠送积分活动 1162103
关于科研通互助平台的介绍 1062102