Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better

计算机科学 深度学习 软件部署 人工智能 机器学习 领域(数学) 数据科学 延迟(音频) 软件工程 电信 数学 纯数学
作者
Gaurav Menghani
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (12): 1-37 被引量:235
标识
DOI:10.1145/3578938
摘要

Deep learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval, and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, and resources required to train, among others, have all increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. It is our hope that this survey would provide readers with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll应助健忘捕采纳,获得10
4秒前
Shennnn完成签到,获得积分10
7秒前
sjx_13351766056完成签到 ,获得积分10
7秒前
顾矜应助keyantong采纳,获得10
9秒前
年轻真好啊应助xixi采纳,获得10
9秒前
lily完成签到,获得积分10
11秒前
乐观小之应助韦老虎采纳,获得10
13秒前
20秒前
常若冰完成签到,获得积分10
21秒前
21秒前
Janvenns完成签到,获得积分10
21秒前
22秒前
淡定的半梦完成签到,获得积分10
22秒前
甜甜的莺完成签到,获得积分10
23秒前
keyantong完成签到,获得积分10
23秒前
CSR发布了新的文献求助10
27秒前
28秒前
28秒前
Tao发布了新的文献求助10
32秒前
研友_VZG7GZ应助Shennnn采纳,获得20
33秒前
慕青应助流动中的小孩采纳,获得10
34秒前
zr完成签到,获得积分10
35秒前
37秒前
凯旋预言完成签到 ,获得积分10
39秒前
log发布了新的文献求助10
42秒前
爱科研的小多肉完成签到,获得积分10
42秒前
42秒前
乐观小之应助认真的寒香采纳,获得10
43秒前
45秒前
ganjqly应助与我安采纳,获得20
46秒前
48秒前
reforgy完成签到,获得积分20
49秒前
深情安青应助激动的一手采纳,获得10
51秒前
水果完成签到,获得积分10
51秒前
52秒前
52秒前
斯文败类应助七十二采纳,获得10
54秒前
阳光项链完成签到,获得积分10
54秒前
CSR完成签到,获得积分10
55秒前
狮子卷卷完成签到,获得积分10
55秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509723
关于积分的说明 11148644
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792128
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808