Deeppipe: Theory-guided LSTM method for monitoring pressure after multi-product pipeline shutdown

稳健性(进化) 关闭 计算机科学 管道(软件) 管道运输 人工神经网络 人工智能 工程类 机械工程 生物化学 基因 核工程 化学 程序设计语言
作者
Jianqin Zheng,Jian Du,Yongtu Liang,Changjiang Wang,Qi Liao,Haoran Zhang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:155: 518-531 被引量:37
标识
DOI:10.1016/j.psep.2021.09.046
摘要

The pressure changes dramatically during the shutdown process of the multi-product pipeline. When the pipeline pressure comes to decrease, it is often mistaken as pipeline leakage or other abnormal condition which increases the burden of the operator on-site. At present, the method of pipeline shutdown pressure analysis is mainly based on numerical simulation which can not monitor shutdown pressure in real-time. In this work, the time-series approximate ability of long short-term memory (LSTM) is taken advantage of to construct a shutdown pressure prediction model. To overcome the drawback of this deep learning algorithm that is trained only by ample data, the scientific principle and theory are integrated into LSTM. Subsequently, the theory-guided long short-term memory (TG-LSTM) is proposed for pipeline shutdown pressure prediction. The proposed model is trained with available data and simultaneously guided by the theory (physical principle and engineering theory) of the underlying problem. In the training process, the data mismatch, as well as monotonicity constraints, and boundary constraints are coupled into loss function. After acquiring the parameters of the neural network, a TG-LSTM model is established which not only fits the data, but also follows the physical principle and the engineering theory. The proposed model is verified by three real-world multi-product pipelines. The results indicate that TG-LSTM achieves better accuracy than other prediction models, with MAPE being 0.246%, 0.186%, and 0.143%, respectively. Finally, the sensitivity analysis of different hyper-parameter is conducted to illustrate the robustness of TG-LSTM in pipeline shutdown pressure prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助AoH_bbl采纳,获得10
刚刚
Rui发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
春申君完成签到 ,获得积分10
2秒前
在水一方应助lemon采纳,获得10
2秒前
zhangyu完成签到,获得积分10
2秒前
只影有你完成签到,获得积分10
2秒前
2秒前
Evelyn完成签到,获得积分10
3秒前
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
皮皮虾小段完成签到 ,获得积分10
5秒前
5秒前
a成完成签到,获得积分10
5秒前
囙氼仚发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
张奎完成签到,获得积分10
6秒前
autism完成签到,获得积分20
6秒前
XZP完成签到,获得积分10
7秒前
YH发布了新的文献求助10
7秒前
徐旖旎发布了新的文献求助10
7秒前
阿月完成签到,获得积分10
7秒前
Evelyn发布了新的文献求助10
7秒前
小段同学发布了新的文献求助10
8秒前
Khr1stINK发布了新的文献求助10
8秒前
8秒前
吐司大王完成签到,获得积分10
8秒前
xiaoshi完成签到,获得积分10
8秒前
hjkluo发布了新的文献求助10
9秒前
Keymo发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4031257
求助须知:如何正确求助?哪些是违规求助? 3569923
关于积分的说明 11360054
捐赠科研通 3300499
什么是DOI,文献DOI怎么找? 1817100
邀请新用户注册赠送积分活动 891283
科研通“疑难数据库(出版商)”最低求助积分说明 814132