Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features

人工智能 卷积神经网络 深度学习 接收机工作特性 计算机辅助诊断 计算机科学 模式识别(心理学) 特征选择 人工神经网络 机器学习
作者
Xianfang Hu,Jing Gong,Wei Zhou,Haiming Li,Shengping Wang,Wei Meng,Weijun Peng,Yajia Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065015-065015 被引量:46
标识
DOI:10.1088/1361-6560/abe735
摘要

This study aims to develop a computer-aided diagnosis (CADx) scheme to classify between benign and malignant ground glass nodules (GGNs), and fuse deep leaning and radiomics imaging features to improve the classification performance.We first retrospectively collected 513 surgery histopathology confirmed GGNs from two centers. Among these GGNs, 100 were benign and 413 were malignant. All malignant tumors were stage I lung adenocarcinoma. To segment GGNs, we applied a deep convolutional neural network and residual architecture to train and build a 3D U-Net. Then, based on the pre-trained U-Net, we used a transfer learning approach to build a deep neural network (DNN) to classify between benign and malignant GGNs. With the GGN segmentation results generated by 3D U-Net, we also developed a CT radiomics model by adopting a series of image processing techniques, i.e. radiomics feature extraction, feature selection, synthetic minority over-sampling technique, and support vector machine classifier training/testing, etc. Finally, we applied an information fusion method to fuse the prediction scores generated by DNN based CADx model and CT-radiomics based model. To evaluate the proposed model performance, we conducted a comparison experiment by testing on an independent testing dataset.Comparing with DNN model and radiomics model, our fusion model yielded a significant higher area under a receiver operating characteristic curve (AUC) value of 0.73 ± 0.06 (P < 0.01). The fusion model generated an accuracy of 75.6%, F1 score of 84.6%, weighted average F1 score of 70.3%, and Matthews correlation coefficient of 43.6%, which were higher than the DNN model and radiomics model individually.Our experimental results demonstrated that (1) applying a CADx scheme was feasible to diagnosis of early-stage lung adenocarcinoma, (2) deep image features and radiomics features provided complementary information in classifying benign and malignant GGNs, and (3) it was an effective way to build DNN model with limited dataset by using transfer learning. Thus, to build a robust image analysis based CADx model, one can combine different types of image features to decode the imaging phenotypes of GGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小小翔完成签到,获得积分10
刚刚
耍酷问兰完成签到,获得积分10
刚刚
刚刚
哇哇哇发布了新的文献求助10
1秒前
1秒前
1秒前
alc发布了新的文献求助10
1秒前
xdd完成签到,获得积分10
2秒前
Lothar完成签到,获得积分20
2秒前
lu发布了新的文献求助10
3秒前
3秒前
mmyhn发布了新的文献求助10
3秒前
小陈发布了新的文献求助10
3秒前
cclyfan完成签到,获得积分10
4秒前
小宸给小宸的求助进行了留言
4秒前
杨杨完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
郑工周完成签到,获得积分10
7秒前
纯白色的现代水墨完成签到,获得积分10
7秒前
8秒前
李爱国应助SUMING采纳,获得10
9秒前
9秒前
xlxlaaa完成签到 ,获得积分10
10秒前
小陈完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
小晋发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
小二郎应助sundog采纳,获得10
15秒前
NexusExplorer应助乐观伟诚采纳,获得10
15秒前
梦槐发布了新的文献求助30
16秒前
图图烤肉发布了新的文献求助10
16秒前
16秒前
ZMJ困困ZJY发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923