电
玻璃回收
环境科学
生命周期评估
欧洲联盟
生产(经济)
光伏系统
材料科学
环境工程
业务
工程类
复合材料
电气工程
经济
经济政策
宏观经济学
作者
Amelie Müller,Lorenz Friedrich,Christian Reichel,Sina Herceg,M. Mittag,Dirk Holger Neuhaus
标识
DOI:10.1016/j.solmat.2021.111277
摘要
Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO 2 -eq/kW p , respectively. This corresponds to CO 2 -eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO 2 -eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs. • Single-Si glass-glass modules show lower impacts than glass-backsheet modules. • Most impacts lowest for module production in EU, followed by Germany and China. • Comparison of influence of different life cycle inventory datasets on results. • Proposal of warranty-based yield calculation method for more exact impacts per kWh. • Call for differentiated LCA guidelines to support sustainable panel designs.
科研通智能强力驱动
Strongly Powered by AbleSci AI