Learning to traverse over graphs with a Monte Carlo tree search-based self-play framework

计算机科学 启发式 强化学习 蒙特卡罗树搜索 旅行商问题 导线 启发式 人工智能 图形 车辆路径问题 数学优化 理论计算机科学 节点(物理) 机器学习 蒙特卡罗方法 布线(电子设计自动化) 算法 数学 统计 地理 工程类 操作系统 结构工程 计算机网络 大地测量学
作者
Qi Wang,Yongsheng Hao,Jie Cao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:105: 104422-104422 被引量:5
标识
DOI:10.1016/j.engappai.2021.104422
摘要

The combinatorial optimization (CO) problems on the graph are the core and classic problems in artificial intelligence (AI) and operations research (OR). For example, the Vehicle Routing Problem (VRP) and Traveling Salesman Problem (TSP) are fascinating NP-hard problems and have important significance for the existing transportation system. Traditional methods such as heuristics methods, exact algorithms, and solution solvers can already find approximate solutions on small-scale graphs. However, they are helpless for large-scale graphs and other problems with similar structures. Moreover, traditional methods often require artificially designed heuristic functions to aid decision-making. In recent years, more and more work has focused on applying deep learning and reinforcement learning (RL) to learn heuristics, which allows us to learn the internal structure of the graph end-to-end and find the optimal path under the guidance of heuristic rules. However, most of these still need manual assistance, and the RL method used has the problems of low sampling efficiency and small searchable space. This paper proposes a novel framework (called OmegaZero) based on Alphago Zero, which does not prescribe expert experience or label data but is trained through self-play. We divide the learning into two stages: in the first stage, we employ graph attention network (GAT) and GRU to learn node representations and memory history trajectories. In the second stage, we employ Monte Carlo tree search (MCTS) and deep RL to search for the solution space and train the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助llzr采纳,获得10
刚刚
Python_Liu完成签到 ,获得积分10
1秒前
1秒前
BallQ完成签到,获得积分10
1秒前
桐桐应助沉静的寄容采纳,获得10
2秒前
JamesPei应助李键刚采纳,获得10
3秒前
叼着奶瓶上天完成签到,获得积分10
3秒前
Criminology34应助bzlish采纳,获得10
3秒前
小王发布了新的文献求助10
3秒前
4秒前
mmy发布了新的文献求助100
4秒前
4秒前
4秒前
Mr.Ren发布了新的文献求助10
5秒前
慕青应助六月采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
月光完成签到 ,获得积分10
6秒前
6秒前
大爱人生完成签到 ,获得积分10
7秒前
哆啦小鱼发布了新的文献求助30
7秒前
天才包完成签到,获得积分10
8秒前
8秒前
KW完成签到,获得积分10
9秒前
Yiiiiii发布了新的文献求助10
9秒前
9秒前
热情的幻丝完成签到,获得积分10
9秒前
taoze发布了新的文献求助10
9秒前
sommer12345发布了新的文献求助10
10秒前
zz发布了新的文献求助10
11秒前
11秒前
小王完成签到,获得积分20
11秒前
CodeCraft应助矮小的向雪采纳,获得10
11秒前
柒柒发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711166
求助须知:如何正确求助?哪些是违规求助? 5202553
关于积分的说明 15263462
捐赠科研通 4863587
什么是DOI,文献DOI怎么找? 2610793
邀请新用户注册赠送积分活动 1561077
关于科研通互助平台的介绍 1518598