亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sub-10 nm two-dimensional transistors: Theory and experiment

磷烯 悬空债券 晶体管 物理 量子隧道 场效应晶体管 光电子学 功勋 量子电容 半导体 从头算 纳米技术 凝聚态物理 材料科学 量子力学 带隙 电压
作者
Ruge Quhe,Lin Xu,Shiqi Liu,Chen Yang,Yangyang Wang,Hong Li,Jie Yang,Qiuhui Li,Bowen Shi,Ying Li,Yuanyuan Pan,Xiaotian Sun,Jingzhen Li,Mouyi Weng,Han Zhang,Ying Guo,Linqiang Xu,Hao Tang,Jichao Dong,Jinbo Yang
出处
期刊:Physics Reports [Elsevier]
卷期号:938: 1-72 被引量:160
标识
DOI:10.1016/j.physrep.2021.07.006
摘要

Presently Si-based field-effect transistors (FETs) are approaching their physical limit, and further scaling their gate length down to the sub-10 nm region is becoming extremely difficult. Benefitting from the atomic-scale thickness and dangling-bond-free flat surface, two-dimensional semiconductors (2DSCs) have good electrostatics and carrier transportability. The FETs based on the 2DSC channel have the potential to scale the FETs’ gate length down to the sub-10 nm region while avoiding apparent degradation of the device performance. In this review, we introduce the recent experimental and ab initio quantum transport simulation progress in the 2D FETs with a gate length less than 10 nm. Remarkably, in the extremely optimistic condition, many 2D FETs (i.e phosphorene, silicane, arsenene, tellurene, WSe2, InSe, Bi2O2Se, GeSe, etc.) show excellent device performance for the high performance and/or low power applications and indeed can extend Moore’s law down to 1∼2-nm gate length in terms of the ab initio quantum transport simulation. The sub-10 nm 2D tunneling FETs are predicted to generally have smaller energy-delay products compared with the 2D metal–oxide–semiconductor FETs and appear more competitive for the low power application. The carrier effective mass plays a key role in determining the device performance. Via negative capacitance techniques, the device performance can be further improved. Finally, we outline the challenges and outlook on the future development directions in the sub-10 nm 2D FETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
9秒前
AllenZ发布了新的文献求助10
12秒前
cocopan发布了新的文献求助10
26秒前
以七完成签到 ,获得积分10
27秒前
开朗若之完成签到 ,获得积分10
37秒前
潇洒冰蓝完成签到,获得积分10
47秒前
47秒前
50秒前
50秒前
54秒前
54秒前
manfullmoon发布了新的文献求助10
55秒前
56秒前
manfullmoon发布了新的文献求助10
1分钟前
1分钟前
manfullmoon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534320
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450972