Effects of module stiffness and initial compression on lithium-ion cell aging

压缩(物理) 离子 材料科学 刚度 锂离子电池 锂(药物) 化学 电池(电) 复合材料 热力学 物理 心理学 功率(物理) 有机化学 精神科
作者
Tobias Deich,Mathias Storch,Kai Steiner,Andreas Bund
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:506: 230163-230163 被引量:70
标识
DOI:10.1016/j.jpowsour.2021.230163
摘要

The effects of automotive-related lithium-ion module design, i.e. module stiffness and initial compression during module assembly on cell aging, swelling and pressure evolution are still largely unknown. This paper presents the results of a long-term aging study of 12 large-format automotive graphite/NMC 622 pouch cells, cycled for different module stiffnesses and initial compressions using design of experiments. Statistical analysis of mechanical and aging data revealed significant nonlinear (interaction) effects of both factors on pressure evolution, capacity loss and increase in internal resistance of the cells. Pressure dependent cell aging is observed over 1000 cycles, which was related to loss of active material at the cathode from differential voltage analysis. Post-mortem analysis confirmed a cathode active material loss via half- and full-cell measurements of harvested electrodes. Cross-section SEM micrographs revealed increasing NMC-particle cracking with higher pressure. Based on this, a fatigue-based aging model was developed to describe the capacity loss due to pressure dependent particle cracking. The presented approach enables both improved modeling of pressure dependent aging and lifetime optimized module design • Cell swelling and aging under module stiffnesses and initial compressions •Significant effects of both factors on cell aging and pressure evolution •Pressure correlates with capacity fade due to loss of cathode active material •Active material loss confirmed by half-cell measurements and SEM cross-sections •Fatigue-based aging model of cathode particle cracking
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
1秒前
神券胀得难受完成签到,获得积分10
1秒前
传奇3应助做好胶水采纳,获得10
1秒前
liuhaiChen完成签到,获得积分20
2秒前
大花生小米完成签到,获得积分10
2秒前
研友_VZG7GZ应助心旷神怡采纳,获得10
2秒前
ACCEPT完成签到,获得积分10
3秒前
忐忑的蓝血完成签到,获得积分10
4秒前
Olsters发布了新的文献求助10
4秒前
Orange应助DT采纳,获得10
4秒前
5秒前
小马甲应助清晨采纳,获得10
5秒前
科研通AI2S应助liuhaiChen采纳,获得10
6秒前
圆圆完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
呐呐呐完成签到,获得积分10
7秒前
8秒前
知性的土豆完成签到,获得积分10
8秒前
共享精神应助小灰灰采纳,获得10
8秒前
9秒前
Rottyyii发布了新的文献求助10
9秒前
Hello应助灵巧剑心采纳,获得10
9秒前
9秒前
乐乐发布了新的文献求助10
11秒前
11秒前
binshier发布了新的文献求助10
12秒前
WangYZ发布了新的文献求助50
12秒前
7890733发布了新的文献求助10
13秒前
13秒前
一二发布了新的文献求助10
14秒前
14秒前
14秒前
无极微光应助glacial采纳,获得20
14秒前
心旷神怡发布了新的文献求助10
15秒前
苏梓卿完成签到,获得积分10
15秒前
16秒前
酒瘾少女完成签到,获得积分10
17秒前
17秒前
含蓄小蕊完成签到,获得积分10
17秒前
FashionBoy应助EZ采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858