Effects of module stiffness and initial compression on lithium-ion cell aging

压缩(物理) 离子 材料科学 刚度 锂离子电池 锂(药物) 化学 电池(电) 复合材料 热力学 物理 心理学 功率(物理) 有机化学 精神科
作者
Tobias Deich,Mathias Storch,Kai Steiner,Andreas Bund
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:506: 230163-230163 被引量:21
标识
DOI:10.1016/j.jpowsour.2021.230163
摘要

The effects of automotive-related lithium-ion module design, i.e. module stiffness and initial compression during module assembly on cell aging, swelling and pressure evolution are still largely unknown. This paper presents the results of a long-term aging study of 12 large-format automotive graphite/NMC 622 pouch cells, cycled for different module stiffnesses and initial compressions using design of experiments. Statistical analysis of mechanical and aging data revealed significant nonlinear (interaction) effects of both factors on pressure evolution, capacity loss and increase in internal resistance of the cells. Pressure dependent cell aging is observed over 1000 cycles, which was related to loss of active material at the cathode from differential voltage analysis. Post-mortem analysis confirmed a cathode active material loss via half- and full-cell measurements of harvested electrodes. Cross-section SEM micrographs revealed increasing NMC-particle cracking with higher pressure. Based on this, a fatigue-based aging model was developed to describe the capacity loss due to pressure dependent particle cracking. The presented approach enables both improved modeling of pressure dependent aging and lifetime optimized module design • Cell swelling and aging under module stiffnesses and initial compressions •Significant effects of both factors on cell aging and pressure evolution •Pressure correlates with capacity fade due to loss of cathode active material •Active material loss confirmed by half-cell measurements and SEM cross-sections •Fatigue-based aging model of cathode particle cracking
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
秋雪瑶应助使命采纳,获得10
5秒前
6秒前
6秒前
8秒前
8秒前
9秒前
卡皮巴拉应助keyan狗采纳,获得10
9秒前
一步一步完成签到,获得积分10
9秒前
10秒前
Zzzz完成签到,获得积分20
10秒前
叶剑通发布了新的文献求助10
11秒前
12秒前
13秒前
跳跳骑士完成签到,获得积分10
13秒前
wujiasheng发布了新的文献求助10
15秒前
酸化土壤改良应助Zzzz采纳,获得10
16秒前
跳跳骑士发布了新的文献求助10
16秒前
CodeCraft应助安诺采纳,获得10
16秒前
安详安阳关注了科研通微信公众号
16秒前
17秒前
蓬蒿人发布了新的文献求助10
17秒前
19秒前
gjww应助阿大呆呆采纳,获得30
21秒前
gjww应助阿大呆呆采纳,获得30
21秒前
gjww应助阿大呆呆采纳,获得30
21秒前
21秒前
22秒前
22秒前
cc完成签到,获得积分10
23秒前
巫雁完成签到,获得积分10
23秒前
leek完成签到 ,获得积分10
23秒前
光亮傲珊发布了新的文献求助30
23秒前
忧郁凌波完成签到,获得积分10
24秒前
24秒前
hhh完成签到 ,获得积分10
25秒前
巫雁发布了新的文献求助10
26秒前
26秒前
米琪发布了新的文献求助10
28秒前
斯文可仁发布了新的文献求助10
28秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476017
求助须知:如何正确求助?哪些是违规求助? 2140431
关于积分的说明 5454905
捐赠科研通 1863737
什么是DOI,文献DOI怎么找? 926542
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495727