清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds

高光谱成像 人工智能 计算机科学 模式识别(心理学) 支持向量机 主成分分析 预处理器 随机森林 深度学习 数据集
作者
Liu Zhang,Heng Sun,Zhenhong Rao,Haiyan Ji
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:229: 117973-117973 被引量:78
标识
DOI:10.1016/j.saa.2019.117973
摘要

In recent years, deep learning models have been widely used in the field of hyperspectral imaging. However, the training of deep learning models requires not only a large number of samples, but also the need to set too many hyper-parameters, which is time consuming and laborious for researchers. This study used hyperspectral imaging technology combined with a deep learning model suitable for small-scale sample data sets, deep forests (DF) model, to classify rice seeds with different degrees of frost damage. During the period, three spectral preprocessing methods (Savitzky-Golay first derivative (SG1), standard normal variate (SNV), and multivariate scatter correction (MSC)) were used to process the original spectral data, and three feature extraction algorithms (principal component analysis (PCA), successive projections algorithm (SPA), and neighborhood component analysis (NCA)) were used to extract the characteristic wavelengths. Moreover, DF model and three traditional machine learning models (decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM)) were built based on different numbers of sample sets. After multivariate data analysis, it showed that the pretreatment effect of MSC was the most excellent, and the characteristic wavelength extracted by NCA algorithm was the most useful. In addition, the performance of DF model was better than these three traditional classifier models, and it still performed well in small-scale sample set data. Therefore, DF model was chosen as the best classification model. The results of this study show that the DF model maintains good classification performance in small-scale sample set data, and it has a good application prospect in hyperspectral imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hunbaekkkkk完成签到 ,获得积分10
5秒前
orixero应助ma采纳,获得10
14秒前
18秒前
杨志坚完成签到 ,获得积分10
26秒前
热狗完成签到 ,获得积分10
46秒前
1分钟前
星辰大海应助葛力采纳,获得10
1分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
2分钟前
ma发布了新的文献求助10
2分钟前
2分钟前
dylanqy发布了新的文献求助30
3分钟前
3分钟前
优雅山柏发布了新的文献求助10
3分钟前
3分钟前
zoe完成签到 ,获得积分10
4分钟前
王_123123123123w完成签到 ,获得积分10
4分钟前
dylanqy完成签到,获得积分10
4分钟前
huangzsdy完成签到,获得积分10
4分钟前
ChiHiRo9Q完成签到,获得积分10
4分钟前
baroque完成签到 ,获得积分10
5分钟前
研友_VZG7GZ应助苔藓采纳,获得10
5分钟前
5分钟前
苔藓发布了新的文献求助10
5分钟前
科研通AI5应助ma采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
ma发布了新的文献求助10
6分钟前
123完成签到 ,获得积分10
6分钟前
慕青应助百里采纳,获得10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
6分钟前
7分钟前
葛力发布了新的文献求助10
7分钟前
百里发布了新的文献求助10
7分钟前
方白秋完成签到,获得积分10
7分钟前
科研通AI2S应助葛力采纳,获得10
7分钟前
naczx完成签到,获得积分0
7分钟前
7分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603