Predicting drug–protein interaction using quasi-visual question answering system

水准点(测量) 人工智能 卷积神经网络 符号 代表(政治) 可视化 计算机科学 UniProt公司 模式识别(心理学) 机器学习 数学 生物 政治 地理 法学 基因 大地测量学 算术 生物化学 政治学
作者
Shuangjia Zheng,Yongjian Li,Sheng Chen,Jun Xu,Yuedong Yang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (2): 134-140 被引量:223
标识
DOI:10.1038/s42256-020-0152-y
摘要

Identifying novel drug–protein interactions is crucial for drug discovery. For this purpose, many machine learning-based methods have been developed based on drug descriptors and one-dimensional protein sequences. However, protein sequences cannot accurately reflect the interactions in three-dimensional space. However, direct input of three-dimensional structure is of low efficiency due to the sparse three-dimensional matrix, and is also prevented by the limited number of co-crystal structures available for training. Here we propose an end-to-end deep learning framework to predict the interactions by representing proteins with a two-dimensional distance map from monomer structures (Image) and drugs with molecular linear notation (String), following the visual question answering mode. For efficient training of the system, we introduce a dynamic attentive convolutional neural network to learn fixed-size representations from the variable-length distance maps and a self-attentional sequential model to automatically extract semantic features from the linear notations. Extensive experiments demonstrate that our model obtains competitive performance against state-of-the-art baselines on the directory of useful decoys, enhanced (DUD-E), human and BindingDB benchmark datasets. Further attention visualization provides biological interpretation to depict highlighted regions of both protein and drug molecules. When predicting the interaction of proteins with potential drugs, the protein can be encoded as its one-dimensional sequence or a three-dimensional structure, which can capture more relevant features of the protein, but also makes the task to predict the interactions harder. A new method predicts these interactions using a two-dimensional distance matrix representation of a protein, which can be processed like a two-dimensional image, striking a balance between the data being simple to process and rich in relevant structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
西门醉卉发布了新的文献求助10
3秒前
李俊枫发布了新的文献求助10
3秒前
3秒前
壮观的海豚完成签到 ,获得积分10
5秒前
嘿嘿嘿完成签到,获得积分10
5秒前
平常的毛豆应助yyy采纳,获得10
7秒前
朝菌完成签到,获得积分10
7秒前
ghjiangye发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
西门醉卉完成签到,获得积分10
10秒前
yls发布了新的文献求助10
14秒前
mingtian完成签到,获得积分10
14秒前
XSCOOP完成签到,获得积分20
15秒前
15秒前
英俊的铭应助何禾采纳,获得10
16秒前
cdercder应助xzy998采纳,获得10
16秒前
16秒前
16秒前
yuki完成签到 ,获得积分10
19秒前
shiyi完成签到,获得积分10
19秒前
爆米花应助高兴的夜天采纳,获得10
20秒前
21秒前
21秒前
852应助ncycg采纳,获得10
21秒前
白青完成签到,获得积分10
21秒前
21秒前
丁丁丁完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
24秒前
ding应助科研通管家采纳,获得10
24秒前
24秒前
Orange应助科研通管家采纳,获得30
24秒前
诸葛御风应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790