模型预测控制
预防性维护
预测性维护
计算机科学
执行机构
循环神经网络
过程(计算)
非线性系统
方案(数学)
理论(学习稳定性)
集成学习
非线性模型
控制工程
控制(管理)
人工智能
机器学习
控制理论(社会学)
工程类
人工神经网络
可靠性工程
数学
数学分析
物理
操作系统
量子力学
作者
Zhe Wu,Panagiotis D. Christofides
标识
DOI:10.1016/b978-0-12-820028-5.00014-x
摘要
This chapter focuses on the development of an economic model predictive control scheme that incorporates an ensemble of recurrent neural networks (RNN) for prediction and addresses economic optimality and closed-loop stability of nonlinear systems under preventive actuator maintenance. Specifically, an ensemble of RNN models is developed using data from extensive open-loop simulations to capture process nonlinear dynamics in an operating region. Based on the ensemble of RNN models, an economic model predictive control scheme is proposed to integrate scheduled preventive control actuator maintenance, process economics, and process control into a unified methodology.
科研通智能强力驱动
Strongly Powered by AbleSci AI