Training Learning Strategies to Promote Self-Regulation and Transfer: The Knowledge, Belief, Commitment, and Planning Framework

背景(考古学) 知识管理 心理学 组分(热力学) 培训转移 学习迁移 计算机科学 人工智能 生物 热力学 物理 古生物学
作者
Mark A. McDaniel,Gilles O. Einstein
出处
期刊:Perspectives on Psychological Science [SAGE Publishing]
卷期号:15 (6): 1363-1381 被引量:88
标识
DOI:10.1177/1745691620920723
摘要

Surveys indicate that at all educational levels students often use relatively ineffective study strategies. One potential remedy is to include learning-strategy training into students’ educational experiences. A major challenge, however, is that it has proven difficult to design training protocols that support students’ self-regulation and transfer of effective learning strategies across a range of content. In this article we propose a practical theoretical framework called the knowledge, belief, commitment, and planning (KBCP) framework for guiding strategy training to promote students’ successful self-regulation of effective learning strategies. The KBCP framework rests on the assumption that four essential components must be included in training to support sustained strategy self-regulation: (a) acquiring knowledge about strategies, (b) belief that the strategy works, (c) commitment to using the strategy, and (d) planning of strategy implementation. We develop these assumptions in the context of pertinent research and suggest that each component alone is not sufficient to promote sustained learning-strategy self-regulation. Our intent in developing this learning-strategy training framework is to stimulate renewed interest and effort in investigating how to effectively train learning strategies and their self-regulation and to guide systematic research and application in this area. We close by sketching an example of a concrete training protocol based on the KBCP framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杏苑鸽子发布了新的文献求助10
刚刚
我不是很帅完成签到,获得积分10
刚刚
zh完成签到,获得积分10
刚刚
刚刚
SciGPT应助stdbot采纳,获得10
刚刚
future完成签到 ,获得积分10
1秒前
荡南桥发布了新的文献求助30
1秒前
2秒前
李健应助积极的凌波采纳,获得10
2秒前
司空踏歌应助魔幻灯泡采纳,获得10
3秒前
3秒前
4秒前
gzsy完成签到 ,获得积分10
4秒前
5秒前
sjxbjrndkd完成签到 ,获得积分10
5秒前
年轻的溪流完成签到,获得积分10
6秒前
Heidi完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
MauriceH发布了新的文献求助10
6秒前
科研通AI5应助震动的化蛹采纳,获得10
7秒前
李健的小迷弟应助houfei采纳,获得10
7秒前
酷酷皮卡丘完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
甜蜜阑悦完成签到,获得积分10
10秒前
FIGMA发布了新的文献求助10
10秒前
orixero应助日四又采纳,获得10
12秒前
12秒前
13秒前
13秒前
雪白发卡完成签到,获得积分10
14秒前
许诺发布了新的文献求助10
15秒前
玩笑完成签到 ,获得积分10
15秒前
大模型应助多多采纳,获得30
15秒前
魔幻灯泡完成签到,获得积分10
16秒前
疯狂的炒米粉完成签到 ,获得积分10
16秒前
北极星完成签到,获得积分10
17秒前
bkagyin应助miracle采纳,获得30
17秒前
KD发布了新的文献求助10
17秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924