植入
接触角
复合材料
表面光洁度
表面改性
涂层
牙科
作者
Gabrielle Alencar Ferreira Silva,Fernanda Faot,Wander José da Silva,Altair Antoninha Del Bel Cury
标识
DOI:10.1016/j.dental.2020.10.024
摘要
Abstract Objective To evaluate the influence of hydrophilicity on the surface integrity of implants after insertion in low-density artificial bone and to determine the distribution of titanium (Ti) particles along the bone bed. Methods Forty-eight dental implants with different designs (Titamax Ex, Facility, Alvim, and Drive) and surface treatments (Neoporos® and Aqua™) were inserted into artificial bone blocks with density compatible with bone type III-IV. Hydrophobic Neoporos® surfaces were obtained by sandblasting and acid etching while hydrophilic Aqua™ surfaces were obtained by sandblasting, acid etching, and storage in an isotonic 0.9% NaCl solution. The surface integrity was evaluated by Scanning Electron Microscope (SEM) and the surface roughness parameters (Sa, Sp, Ssk, Sdr, Spk, Sk, and Svk) and surface area were measured with Laser Scanning Confocal Microscopy before and after installation. Bone beds were inspected with Digital Microscopy and micro X-Ray Fluorescence (μ-XRF) to analyze the metallic element distribution along the bone bed. Results Acqua™ implants had higher initial Sa and a pronounced reduction of Sa and Sp during insertion, compared to NeoPoros® implants. After insertion, Sa and Sp of Acqua™ and NeoPoros® implants equalized, differing only between designs of Acqua™ implants. Surface damage was observed after insertion, mainly in the apical region. Facility implants that are made of TiG5 released fewer debris particles, while the highest Ti intensity was detected in the cervical region of the Titamax Ex Acqua™ and Drive Acqua™ implants. Significance Physicochemical modifications to achieve surface hydrophilicity created a rougher surface that was more susceptible to surface alterations, resulting in more Ti particle release into the bone bed during surgical insertion. The higher Ti intensities detected in the cervical region of bone beds may be related to peri-implantitis and marginal bone resorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI