已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Person Re-identification: A Survey and Outlook.

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 鉴定(生物学) 模式识别(心理学) 人工神经网络 特征提取 特征(语言学) 任务分析 特征学习 任务(项目管理) 目标检测
作者
Mang Ye,Jianbing Shen,Gaojie Lin,Tao Xiang,Ling Shao,Steven C. H. Hoi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号: (01): 1-1 被引量:194
标识
DOI:10.1109/tpami.2021.3054775
摘要

Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for four different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criterion to evaluate the Re-ID system. Finally, some important yet under-investigated open issues are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunnn完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
半斤完成签到 ,获得积分10
3秒前
6秒前
wang5945完成签到 ,获得积分10
7秒前
李健应助UACurry采纳,获得10
8秒前
11秒前
明明完成签到,获得积分10
14秒前
GreenDuane完成签到 ,获得积分0
15秒前
zdy完成签到,获得积分10
15秒前
姚小喵完成签到 ,获得积分10
16秒前
Anlotinib发布了新的文献求助10
16秒前
古铜完成签到 ,获得积分10
17秒前
HRZ完成签到 ,获得积分10
20秒前
冷傲的寒云完成签到,获得积分20
21秒前
FashionBoy应助寒雨采纳,获得10
21秒前
WUHUIWEN完成签到,获得积分10
22秒前
24秒前
25秒前
UACurry发布了新的文献求助10
28秒前
阿渺完成签到,获得积分10
28秒前
29秒前
yuan完成签到 ,获得积分10
30秒前
阿渺发布了新的文献求助10
32秒前
dd完成签到 ,获得积分10
33秒前
UACurry完成签到,获得积分20
33秒前
王木木发布了新的文献求助10
33秒前
科研通AI5应助喜悦夏青采纳,获得10
36秒前
爱打球的小蔡鸡完成签到,获得积分10
37秒前
爆米花应助UACurry采纳,获得10
37秒前
路漫漫其修远兮完成签到 ,获得积分10
38秒前
1111完成签到,获得积分10
42秒前
RONG完成签到 ,获得积分10
45秒前
王木木完成签到 ,获得积分20
46秒前
armpit完成签到,获得积分10
47秒前
黯然完成签到 ,获得积分10
49秒前
香蕉觅云应助cookie486采纳,获得10
49秒前
含蓄戾发布了新的文献求助10
51秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491