电压
电气工程
计算机科学
工程类
遥感
环境科学
地质学
作者
Diana Sadykova,Damira Pernebayeva,Mehdi Bagheri,Alex Pappachen James
标识
DOI:10.1109/tpwrd.2019.2944741
摘要
The high voltage insulator requires continuous monitoring and inspection to prevent failures and emergencies. Manual inspections are costly as it requires covering a large geographical area where insulators are often subjected to harsh weather conditions. Automatic detection of insulators from aerial images is the first step towards performing real-time classification of insulator conditions using Unmanned Aerial Vehicle (UAV). In this paper, we provide a cost-effective solution for detecting insulators under the conditions of an uncluttered background, varied object resolution and illumination conditions using You Only Look Once (YOLO) deep learning neural network model from aerial images. We apply data augmentation to avoid overfitting with a training set size of 56000 image samples. It is demonstrated experimentally that this method can accurately locate insulator on UAV based real-time image data. The detected insulator images are then successfully subjected to insulator surface condition assessment for the presence of ice, snow and water using different classifiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI