Optical-flow-based framework to boost video object detection performance with object enhancement

计算机科学 人工智能 计算机视觉 目标检测 特征(语言学) 视频跟踪 对象(语法) 光流 Viola–Jones对象检测框架 对象类检测 特征提取 模式识别(心理学) 图像(数学) 人脸检测 面部识别系统 哲学 语言学
作者
Long Fan,Tao Zhang,Wenli Du
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:170: 114544-114544 被引量:48
标识
DOI:10.1016/j.eswa.2020.114544
摘要

With image object detection techniques progressing, video object detection attracts a lot of attention more than ever before. However, the performance of detecting the object from a video suffers a lot as object occlusion can always lead to the object in the presence of appearance deterioration. To deal with this problem, the temporal correlation of video sequences is often used to reduce the effects of object occlusion in video object detection. In this paper, an optical-flow-feature fusion-based video object detection method is proposed with consideration of temporal coherence among video frames. To further reduce computational complexity, this paper also proposes a packet video processing method. Specifically, video frames are grouped first, and all frames in current group share the same optical flow feature map by feature fusion. Then the Target Image can be formed with object information enhanced by fusing the shared feature map with current frame. The proposed method gives rise to effective background information masking, so that the object detection network can focus more on the foreground object. This method effectively improves the object detection performance and the scene migration performance. Experimental results prove that the proposed method significantly improves the detection accuracy to 78.6% on ImageNet VID. In addition, VGG and ResNet are compared to further verify the effectiveness of the proposed method, and the results can be a persuasive evidence with the highest detection accuracy and acceptable time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honghong完成签到,获得积分10
刚刚
秋秋发布了新的文献求助10
1秒前
qy发布了新的文献求助10
1秒前
NANA发布了新的文献求助10
1秒前
木每完成签到,获得积分10
1秒前
小七2022完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
迷人的天抒完成签到 ,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
4秒前
Cactus发布了新的文献求助10
5秒前
suiyi发布了新的文献求助10
5秒前
6秒前
志可刘发布了新的文献求助30
6秒前
LIULIU完成签到,获得积分10
6秒前
盛欢发布了新的文献求助10
6秒前
有魅力的白玉关注了科研通微信公众号
8秒前
浮游应助nxdjmzm采纳,获得10
8秒前
9秒前
9秒前
科研小贩发布了新的文献求助10
9秒前
合适的修洁完成签到,获得积分10
10秒前
Maestro发布了新的文献求助10
10秒前
诚心八宝粥完成签到,获得积分10
11秒前
11秒前
隐形曼青应助pomelo采纳,获得10
11秒前
huandiyu完成签到,获得积分10
11秒前
12秒前
12秒前
单薄紫菜发布了新的文献求助10
13秒前
13秒前
先锋完成签到 ,获得积分10
14秒前
14秒前
14秒前
whutyoyo完成签到,获得积分20
14秒前
顺利念双完成签到,获得积分10
14秒前
希望天下0贩的0应助郝誉采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103