Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
charlie完成签到,获得积分10
刚刚
如意2023完成签到 ,获得积分10
2秒前
认真的飞扬发布了新的文献求助200
3秒前
粗暴的曼凝完成签到,获得积分20
3秒前
彭于晏应助小小二采纳,获得10
3秒前
4秒前
隐形曼青应助少华采纳,获得10
4秒前
李爱国应助是叶暖晚秋哇采纳,获得10
4秒前
怕黑向秋完成签到,获得积分10
4秒前
Even9完成签到,获得积分0
4秒前
5秒前
zzzzzz发布了新的文献求助10
5秒前
尤珩发布了新的文献求助10
5秒前
6秒前
li-naer发布了新的文献求助10
6秒前
爆米花应助dzz采纳,获得10
7秒前
云悠水澈完成签到,获得积分10
7秒前
7秒前
7秒前
东方巧曼发布了新的文献求助10
8秒前
ding应助疯花血月采纳,获得10
8秒前
怕黑向秋发布了新的文献求助10
8秒前
yueyezhulin发布了新的文献求助10
9秒前
9秒前
9秒前
acb完成签到,获得积分10
9秒前
10秒前
答题不卡完成签到,获得积分20
10秒前
马小翠发布了新的文献求助30
11秒前
我喜欢大学霸完成签到,获得积分10
11秒前
11秒前
感性的神级完成签到,获得积分10
12秒前
鳗鱼小小发布了新的文献求助30
12秒前
爱吃肉夹馍应助li-naer采纳,获得20
12秒前
铁盐君完成签到,获得积分10
12秒前
12秒前
learn发布了新的文献求助10
13秒前
liuyan0316发布了新的文献求助10
13秒前
Jasper应助虚拟的惜筠采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809784
求助须知:如何正确求助?哪些是违规求助? 3354374
关于积分的说明 10369891
捐赠科研通 3070592
什么是DOI,文献DOI怎么找? 1686492
邀请新用户注册赠送积分活动 810967
科研通“疑难数据库(出版商)”最低求助积分说明 766448