Keyword extraction: Issues and methods

计算机科学 领域(数学) 关键词提取 情报检索 任务(项目管理) 数据科学 领域(数学分析) 互联网 信息抽取 钥匙(锁) 数字图书馆 数据挖掘 万维网 数学分析 艺术 经济 诗歌 管理 文学类 纯数学 数学 计算机安全
作者
Nazanin Firoozeh,Adeline Nazarenko,Fabrice Alizon,Béatrice Daille
出处
期刊:Natural Language Engineering [Cambridge University Press]
卷期号:26 (3): 259-291 被引量:153
标识
DOI:10.1017/s1351324919000457
摘要

Abstract Due to the considerable growth of the volume of text documents on the Internet and in digital libraries, manual analysis of these documents is no longer feasible. Having efficient approaches to keyword extraction in order to retrieve the ‘key’ elements of the studied documents is now a necessity. Keyword extraction has been an active research field for many years, covering various applications in Text Mining, Information Retrieval, and Natural Language Processing, and meeting different requirements. However, it is not a unified domain of research. In spite of the existence of many approaches in the field, there is no single approach that effectively extracts keywords from different data sources. This shows the importance of having a comprehensive review, which discusses the complexity of the task and categorizes the main approaches of the field based on the features and methods of extraction that they use. This paper presents a general introduction to the field of keyword/keyphrase extraction. Unlike the existing surveys, different aspects of the problem along with the main challenges in the field are discussed. This mainly includes the unclear definition of ‘keyness’, complexities of targeting proper features for capturing desired keyness properties and selecting efficient extraction methods, and also the evaluation issues. By classifying a broad range of state-of-the-art approaches and analysing the benefits and drawbacks of different features and methods, we provide a clearer picture of them. This review is intended to help readers find their way around all the works related to keyword extraction and guide them in choosing or designing a method that is appropriate for the application they are targeting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
FORREST1993完成签到,获得积分10
5秒前
SYLH应助ww960517采纳,获得10
5秒前
jelly发布了新的文献求助10
6秒前
hhw完成签到,获得积分10
8秒前
Phucgialam完成签到,获得积分20
16秒前
17秒前
花玥鹿完成签到,获得积分10
19秒前
20秒前
隐形曼青应助wjw采纳,获得10
21秒前
慧慧发布了新的文献求助10
23秒前
dd完成签到,获得积分10
23秒前
Enomama发布了新的文献求助10
24秒前
26秒前
slin_sjtu完成签到,获得积分0
29秒前
科研通AI5应助心神依然采纳,获得10
30秒前
30秒前
大理学子发布了新的文献求助10
31秒前
Mianiu完成签到,获得积分10
31秒前
Enomama完成签到,获得积分10
32秒前
32秒前
乐乐应助Zarc采纳,获得10
32秒前
33秒前
小皮不皮发布了新的文献求助10
34秒前
听风轻语发布了新的文献求助10
36秒前
夜安完成签到 ,获得积分20
39秒前
Apple发布了新的文献求助10
39秒前
dd发布了新的文献求助10
40秒前
威武的匕发布了新的文献求助10
40秒前
42秒前
王瑞发布了新的文献求助10
43秒前
44秒前
yu应助lee采纳,获得10
44秒前
44秒前
46秒前
心神依然发布了新的文献求助10
46秒前
nanana发布了新的文献求助10
48秒前
时米米米完成签到,获得积分10
48秒前
Catherine_Song完成签到 ,获得积分10
50秒前
斯文败类应助慧慧采纳,获得10
51秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979