Early Detection of Alzheimer's Disease with Blood Plasma Proteins Using Support Vector Machines

疾病 生物标志物 支持向量机 特征选择 计算机科学 β淀粉样蛋白 机器学习 阿尔茨海默病 载脂蛋白E 医学 人工智能 生物信息学 计算生物学 病理 生物 生物化学
作者
Chima Eke,Emmanuel Jammeh,Xinzhong Li,Camille Carroll,Stephen Pearson,Emmanuel Ifeachor
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 218-226 被引量:103
标识
DOI:10.1109/jbhi.2020.2984355
摘要

The successful development of amyloid-based biomarkers and tests for Alzheimer's disease (AD) represents an important milestone in AD diagnosis. However, two major limitations remain. Amyloid-based diagnostic biomarkers and tests provide limited information about the disease process and they are unable to identify individuals with the disease before significant amyloid-beta accumulation in the brain develops. The objective in this study is to develop a method to identify potential blood-based non-amyloid biomarkers for early AD detection. The use of blood is attractive because it is accessible and relatively inexpensive. Our method is mainly based on machine learning (ML) techniques (support vector machines in particular) because of their ability to create multivariable models by learning patterns from complex data. Using novel feature selection and evaluation modalities, we identified 5 novel panels of non-amyloid proteins with the potential to serve as biomarkers of early AD. In particular, we found that the combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT may be a key biomarker profile of early disease. Disease detection models based on the identified panels achieved sensitivity (SN) > 80%, specificity (SP) > 70%, and area under receiver operating curve (AUC) of at least 0.80 at prodromal stage (with higher performance at later stages) of the disease. Existing ML models performed poorly in comparison at this stage of the disease, suggesting that the underlying protein panels may not be suitable for early disease detection. Our results demonstrate the feasibility of early detection of AD using non-amyloid based biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyd1640发布了新的文献求助10
1秒前
斯文败类应助木子之水采纳,获得10
1秒前
zzzzz发布了新的文献求助10
2秒前
赫若魔应助codwest采纳,获得10
2秒前
ksdbG完成签到,获得积分10
2秒前
路在脚下完成签到 ,获得积分10
3秒前
沉静的清涟完成签到,获得积分10
3秒前
止戈为武完成签到,获得积分10
3秒前
3秒前
机智访琴完成签到,获得积分10
3秒前
TORCH完成签到 ,获得积分10
3秒前
lailai完成签到 ,获得积分0
4秒前
5秒前
充电宝应助冰柠檬采纳,获得10
5秒前
6秒前
YUDI发布了新的文献求助10
8秒前
nicebro完成签到,获得积分10
9秒前
Zhjie126发布了新的文献求助10
10秒前
小二郎应助梧桐雨210采纳,获得10
12秒前
昏睡的白桃完成签到,获得积分10
13秒前
Dean完成签到,获得积分0
17秒前
冰魄落叶完成签到,获得积分10
18秒前
20秒前
YuanLeiZhang完成签到,获得积分10
21秒前
坐等时光看轻自己完成签到,获得积分0
23秒前
山河星梦完成签到,获得积分10
23秒前
波安班完成签到,获得积分10
24秒前
25秒前
不要慌完成签到 ,获得积分10
25秒前
27秒前
28秒前
xiaoguai完成签到 ,获得积分10
28秒前
AllRightReserved完成签到 ,获得积分10
30秒前
31秒前
zzzzz完成签到,获得积分10
31秒前
邱志鸿完成签到,获得积分10
31秒前
坚强怀绿发布了新的文献求助10
31秒前
日月同辉完成签到,获得积分10
31秒前
梧桐雨210发布了新的文献求助10
32秒前
依依发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074