材料科学
石墨烯
微波食品加热
反射损耗
同轴
吸收(声学)
光电子学
阻抗匹配
电磁辐射
反射(计算机编程)
电磁屏蔽
带宽(计算)
方向(向量空间)
光纤
电场
电磁场
电阻抗
极化(电化学)
光学
表征(材料科学)
全内反射
太赫兹辐射
穿透深度
纳米技术
超材料
各向异性
复合材料
磁导率
作者
He Hao,Zheng Wang,Tianze Liu,Lianming Tong,Xin Gao,Jin Zhang,He Hao,Zheng Wang,Tianze Liu,Lianming Tong,Xin Gao,Jin Zhang
标识
DOI:10.1002/adfm.202519036
摘要
Abstract Graphene fibers hold great promise for next‐generation microwave absorption (MA) applications, but their performance is often hindered by poor impedance matching and inefficient electromagnetic wave attenuation. In this study, it is demonstrated that graphene orientation is a critical structural parameter for optimizing MA performance. By utilizing expansion‐extension flows during coaxial wet spinning, precise tuning of graphene orientation from axial to radial alignment is achieved. A real‐time polarized optical characterization platform enables operando monitoring of orientation evolution, revealing a predictable relationship between flow parameters and graphene alignment. Experimental measurements and electromagnetic simulations show that the orientation of graphene fibers governs internal electric field distribution and impedance matching, resulting in a tunable MA response. Optimized fibers exhibit an effective absorption bandwidth of 6.28 GHz and a minimum reflection loss of −66.7 dB. These findings position orientation engineering as a powerful strategy for enhancing MA materials and provide a generalizable framework for structure‐property optimization in macroscopic nanocarbon assemblies.
科研通智能强力驱动
Strongly Powered by AbleSci AI