Eight-Signature Classifier for Prediction of Nasopharyngeal Carcinoma Survival

医学 鼻咽癌 肿瘤科 内科学 队列 比例危险模型 逻辑回归 放射治疗
作者
Haiyun Wang,Bing-Yu Sun,Zhi-Hua Zhu,Ellen T. Chang,Ka‐Fai To,Jacqueline Siok Gek Hwang,Hao Jiang,Michael Koon-Ming Kam,Gang Chen,Shie-Lee Cheah,Ming Lee,Zhi‐Wei Liu,Jing Chen,Jiaxing Zhang,Hui-Zhong Zhang,Jie‐Hua He,Fa-Long Chen,Xiao-Dong Zhu,Ma-Yan Huang,Ding-Zhun Liao,Jia Fu,Qiong Shao,Man-Bo Cai,Zi-Ming Du,Li‐Xu Yan,Chun-Fang Hu,Ho‐Keung Ng,Joseph Wee,Chao-Nan Qian,Qing Liu,Ingemar Ernberg,Weimin Ye,Hans‐Olov Adami,Anthony T.�C. Chan,Yi-Xin Zeng,Jian‐Yong Shao
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:29 (34): 4516-4525 被引量:140
标识
DOI:10.1200/jco.2010.33.7741
摘要

Currently, nasopharyngeal carcinoma (NPC) prognosis evaluation is based primarily on the TNM staging system. This study aims to identify prognostic markers for NPC.We detected expression of 18 biomarkers by immunohistochemistry in NPC tumors from 209 patients and evaluated the association between gene expression level and disease-specific survival (DSS). We used support vector machine (SVM)--based methods to develop a prognostic classifier for NPC (NPC-SVM classifier). Further validation of the NPC-SVM classifier was performed in an independent cohort of 1,059 patients.The NPC-SVM classifier integrated patient sex and the protein expression level of seven genes, including Epstein-Barr virus latency membrane protein 1, CD147, caveolin-1, phospho-P70S6 kinase, matrix metalloproteinase 11, survivin, and secreted protein acidic and rich in cysteine. The NPC-SVM classifier distinguished patients with NPC into low- and high-risk groups with significant differences in 5-year DSS in the evaluated patients (87% v 37.7%; P < .001) in the validation cohort. In multivariate analysis adjusted for age, TNM stage, and histologic subtype, the NPC-SVM classifier was an independent predictor of 5-year DSS in the evaluated patients (hazard ratio, 4.9; 95% CI, 3.0 to 7.9) in the validation cohort.As a powerful predictor of 5-year DSS among patients with NPC, the newly developed NPC-SVM classifier based on tumor-associated biomarkers will facilitate patient counseling and individualize management of patients with NPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瑾辰发布了新的文献求助10
1秒前
魔幻缘郡发布了新的文献求助10
2秒前
深情安青应助张艳梅采纳,获得10
2秒前
爱听歌的艳完成签到,获得积分10
2秒前
赘婿应助凝雁采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
guozizi应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
guozizi应助科研通管家采纳,获得30
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
华仔应助暗恋寂寞啦采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
guozizi应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
guozizi应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
今后应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得30
4秒前
5秒前
科研小白完成签到,获得积分10
5秒前
小二郎应助火速阿百川采纳,获得10
5秒前
咎灵阳发布了新的文献求助10
5秒前
闪闪树叶完成签到,获得积分10
5秒前
lhcshuang完成签到,获得积分20
6秒前
6秒前
是龙龙呀发布了新的文献求助10
6秒前
6秒前
缥缈耷发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
8秒前
8秒前
lhcshuang发布了新的文献求助10
8秒前
Ava应助可乐采纳,获得10
9秒前
9秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832263
求助须知:如何正确求助?哪些是违规求助? 3374589
关于积分的说明 10485521
捐赠科研通 3094361
什么是DOI,文献DOI怎么找? 1703478
邀请新用户注册赠送积分活动 819465
科研通“疑难数据库(出版商)”最低求助积分说明 771554