O2‐PLS, a two‐block (X–Y) latent variable regression (LVR) method with an integral OSC filter

偏最小二乘回归 潜变量 数学 噪音(视频) 统计 线性回归 回归 计算机科学 回归分析 模式识别(心理学) 人工智能 图像(数学)
作者
Johan Trygg,Svante Wold
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:17 (1): 53-64 被引量:322
标识
DOI:10.1002/cem.775
摘要

Abstract The O2‐PLS method is derived from the basic partial least squares projections to latent structures (PLS) prediction approach. The importance of the covariation matrix ( Y T X ) is pointed out in relation to both the prediction model and the structured noise in both X and Y . Structured noise in X (or Y ) is defined as the systematic variation of X (or Y ) not linearly correlated with Y (or X ). Examples in spectroscopy include baseline, drift and scatter effects. If structured noise is present in X , the existing latent variable regression (LVR) methods, e.g. PLS, will have weakened score–loading correspondence beyond the first component. This negatively affects the interpretation of model parameters such as scores and loadings. The O2‐PLS method models and predicts both X and Y and has an integral orthogonal signal correction (OSC) filter that separates the structured noise in X and Y from their joint X–Y covariation used in the prediction model. This leads to a minimal number of predictive components with full score–loading correspondence and also an opportunity to interpret the structured noise. In both a real and a simulated example, O2‐PLS and PLS gave very similar predictions of Y. However, the interpretation of the prediction models was clearly improved with O2‐PLS, because structured noise was present. In the NIR example, O2‐PLS revealed a strong water peak and baseline offset in the structured noise components. In the simulated example the O2‐PLS plot of observed versus predicted Y‐scores ( u vs u hat ) showed good predictions. The corresponding loading vectors provided good interpretation of the covarying analytes in X and Y . Copyright © 2003 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美好的酸奶完成签到,获得积分20
1秒前
Mars发布了新的文献求助10
1秒前
所所应助shengyou采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
3秒前
vee应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
chen应助科研通管家采纳,获得20
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
vee应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
4秒前
SYLH应助欧皇采纳,获得10
4秒前
卓天宇完成签到,获得积分10
4秒前
4秒前
4秒前
君君发布了新的文献求助10
5秒前
科研通AI5应助星辰不坠落采纳,获得10
5秒前
hahhhhhh2完成签到,获得积分10
5秒前
土豆完成签到,获得积分10
7秒前
拉长的冷霜完成签到,获得积分10
8秒前
苹果亦云发布了新的文献求助10
8秒前
10秒前
11秒前
12秒前
14秒前
执着的导师完成签到 ,获得积分10
14秒前
爆米花应助luis采纳,获得10
16秒前
17秒前
图雄争霸发布了新的文献求助10
17秒前
汪睿发布了新的文献求助10
18秒前
科研通AI5应助单纯的嘉懿采纳,获得10
19秒前
陶醉的蜜蜂完成签到 ,获得积分10
21秒前
dsjlove发布了新的文献求助10
22秒前
无敌大流流完成签到,获得积分10
22秒前
小黄人完成签到,获得积分10
23秒前
Shylie发布了新的文献求助10
24秒前
SciGPT应助得劲采纳,获得10
25秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640