染色质免疫沉淀
基因敲除
分子生物学
荧光素酶
信使核糖核酸
抄写(语言学)
化学
转化生长因子
转录因子
发起人
报告基因
生物
细胞生物学
基因表达
转染
基因
生物化学
语言学
哲学
作者
Amal Abdul‐Hafez,Ruijie Shu,Bruce D. Uhal
摘要
Earlier work showed that TGF-beta1 potently increases angiotensinogen (AGT) gene mRNA in primary human lung fibroblasts. Here the mechanism of TGF-beta1-induced AGT expression was studied in the IMR90 human lung fibroblast cell line. The increase in AGT mRNA induced by TGF-beta1 was completely blocked by actinomycin-D. TGF-beta1 increased the activity of a full-length human AGT promoter-luciferase reporter (AGT-LUC) but did not alter AGT mRNA half-life. Serial deletion analyses revealed that 67% of TGF-beta-inducible AGT-LUC activity resides in a small domain of the AGT core promoter; this domain contains binding sites for hypoxia-inducible factor (HIF)-1 and activation protein-1 (AP-1) transcription factors. TGF-beta1 increased HIF-1alpha protein abundance and the activity of a hypoxia-responsive element reporter; overexpression of HIF-1 increased basal AGT-LUC activity. Both oligonucleotide pulldown and chromatin immunoprecipitation assays revealed increased binding of JunD and HIF-1alpha to the AGT core promoter in response to TGF-beta1. TGF-beta1-inducible AGT-LUC was reduced by an AP-1 dominant negative or by mutation of the AP-1 site. Knockdown of either JunD or HIF-1alpha individually by siRNA partially reduced AGT-LUC. In contrast, simultaneous knockdown of both JunD and HIF-1alpha completely eliminated TGF-beta1-inducible AGT-LUC activity. These data suggest that TGF-beta1 up-regulates AGT transcription in human lung fibroblasts through a mechanism that requires both JunD and HIF-1alpha binding to the AGT core promoter. They also suggest a molecular mechanism linking hypoxia signaling and fibrogenic stimuli in the lungs.
科研通智能强力驱动
Strongly Powered by AbleSci AI