矩阵的特征分解
特征向量
协方差
合成孔径雷达
协方差矩阵
分解
矩阵分解
旋光法
应用数学
算法
数学
散射
计算机科学
遥感
数学优化
物理
人工智能
统计
光学
地理
生物
量子力学
生态学
作者
J.J. van Zyl,Motofumi Arii,Yun-Jin Kim
标识
DOI:10.1109/tgrs.2011.2128325
摘要
Model-based decomposition of polarimetric radar covariance matrices holds the promise that specific scattering mechanisms can be isolated for further quantitative analysis. In this paper, we show that current algorithms suffer from a fatal flaw in that some of the scattering components result in negative powers. We propose a simple modification that ensures that all covariance matrices in the decomposition will have nonnegative eigenvalues. We further combine our nonnegative eigenvalue decomposition with eigenvector decomposition to remove additional assumptions that have to be made before the current algorithms can be used to estimate all the scattering components. Our results are illustrated using Airborne Synthetic Aperture Radar data and show that current algorithms typically overestimate the canopy scattering contribution by 10%-20%.
科研通智能强力驱动
Strongly Powered by AbleSci AI