估计员
工具变量
转化(遗传学)
正交性
数学
计量经济学
不变(物理)
自相关
变量模型中的错误
统计
加性模型
应用数学
变量(数学)
计算机科学
数学分析
生物化学
化学
几何学
数学物理
基因
作者
Manuel Arellano,Olympia Bover
标识
DOI:10.1016/0304-4076(94)01642-d
摘要
This article develops a framework for efficient IV estimators of random effects models with information in levels which can accommodate predetermined variables. Our formulation clarifies the relationship between the existing estimators and the role of transformations in panel data models. We characterize the valid transformations for relevant models and show that optimal estimators are invariant to the transformation used to remove individual effects. We present an alternative transformation for models with predetermined instruments which preserves the orthogonality among the errors. Finally, we consider models with predetermined variables that have constant correlation with the effects and illustrate their importance with simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI