Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking

消隐 工件(错误) 计算机科学 刺激 人工智能 语音识别 模式识别(心理学) 计算机视觉 神经科学 心理学
作者
Cornelia Hartmann,Strahinja Došen,Sebastian Amsuess,Dario Farina
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 807-816 被引量:70
标识
DOI:10.1109/tnsre.2014.2357175
摘要

Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai完成签到,获得积分10
2秒前
2秒前
Jiaox发布了新的文献求助10
2秒前
呆萌的雪晴完成签到,获得积分10
2秒前
淡定翠容发布了新的文献求助10
3秒前
4秒前
527发布了新的文献求助10
4秒前
4秒前
Shmily发布了新的文献求助10
5秒前
上官小怡发布了新的文献求助10
5秒前
田様应助闹闹加油采纳,获得10
7秒前
8秒前
9秒前
9秒前
华仔应助xiaoyudian采纳,获得10
9秒前
finish完成签到,获得积分10
9秒前
无心的星月完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助30
12秒前
527完成签到,获得积分10
12秒前
一条帅龙龙完成签到,获得积分20
13秒前
温酒叙人生完成签到,获得积分20
14秒前
杜祖盛发布了新的文献求助10
14秒前
bk发布了新的文献求助10
15秒前
17秒前
20秒前
21秒前
杜祖盛完成签到,获得积分10
21秒前
BowieHuang应助雪山飞龙采纳,获得10
21秒前
22秒前
Edward发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
是阿瑾呀完成签到 ,获得积分10
22秒前
23秒前
23秒前
科研通AI2S应助mengyao采纳,获得10
24秒前
25秒前
27秒前
水博士发布了新的文献求助20
28秒前
华仔应助简单项链采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863