Understanding the Dose-Effect Relationship

药代动力学 药效学 药品 药物作用 分布(数学) 效力 医学 临床药理学 药理学 化学 数学 体外 生物化学 数学分析
作者
Nicholas H. G. Holford,Lewis B. Sheiner
出处
期刊:Clinical Pharmacokinectics [Adis, Springer Healthcare]
卷期号:6 (6): 429-453 被引量:1120
标识
DOI:10.2165/00003088-198106060-00002
摘要

It is a major goal of clinical pharmacology to understand the dose-effect relationship in therapeutics. Much progress towards this goal has been made in the last 2 decades through the development of pharmacokinetics as a discipline. The study of pharmacokinetics seeks to explain the time course of drug concentration in the body. Recognition of the crucial concepts of clearance and volume of distribution has provided an important link to the physiological determinants of drug disposition. Mathematical models of absorption, distribution, metabolism and elimination have been extensively applied, and generally their predictions agree remarkably well with actual observations. However, the time course of drug concentration cannot in itself predict the time course or magnitude of drug effect. When drug concentrations at the effect site have reached equilibrium and the response is constant, the concentration-effect relationship is known as pharmacodynamics. Mathematical models of pharmacodynamics have been used widely by pharmacologists to describe drug effects on isolated tissues. The crucial concepts of pharmacodynamics are potency — reflecting the sensitivity of the organ or tissue to a drug, and efficacy — describing the maximum response. These concepts have been embodied in a simple mathematical expression, the Emax model, which provides a practical tool for predicting drug response analogous to the compartmental model in pharmacokinetics for predicting drug concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
wyj0815应助科研通管家采纳,获得10
刚刚
刚刚
情怀应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
AAAAA应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
xiaojiu完成签到,获得积分10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
yuliyixue完成签到,获得积分10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
MX应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
秋qiu发布了新的文献求助10
1秒前
霸气凡白发布了新的文献求助10
2秒前
3秒前
高山流水完成签到,获得积分10
3秒前
kenhahahaha发布了新的文献求助10
4秒前
俊秀的半雪完成签到,获得积分10
5秒前
5秒前
6秒前
我是老大应助过客采纳,获得10
6秒前
谦让芹菜完成签到,获得积分10
7秒前
科研通AI5应助司徒文青采纳,获得200
7秒前
李健的小迷弟应助yaya采纳,获得10
8秒前
8秒前
9秒前
SJ7发布了新的文献求助10
9秒前
xubcay完成签到,获得积分10
10秒前
NexusExplorer应助fuchao采纳,获得10
10秒前
秋qiu完成签到,获得积分10
10秒前
BitterGourd关注了科研通微信公众号
10秒前
wang发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054