Toll-like Receptors and Type I Interferons

先天免疫系统 TLR7型 TLR3型 受体 干扰素 信号转导 Toll样受体 伤亡人数 内体 特里夫 模式识别受体 Ⅰ型干扰素 细胞生物学 化学 内部收益率3 TLR9型 免疫系统 生物 Toll样受体9 TLR4型 免疫学 生物化学 遗传学 基因 基因表达 DNA甲基化
作者
Satoshi Uematsu,Shizuo Akira
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:282 (21): 15319-15323 被引量:432
标识
DOI:10.1074/jbc.r700009200
摘要

Toll-like receptors (TLRs) are key molecules of the innate immune systems, which detect conserved structures found in a broad range of pathogens and trigger innate immune responses. A subset of TLRs recognizes viral components and induces antiviral responses. Whereas TLR4 recognizes viral components at the cell surface, TLR3, TLR7, TLR8, and TLR9 recognize viral nucleic acids on endosomal membrane. After ligand recognition, these members activate their intrinsic signaling pathways and induce type I interferon. In this review, we discuss the recent findings of the viral recognition by TLRs and their signaling pathways. Toll-like receptors (TLRs) are key molecules of the innate immune systems, which detect conserved structures found in a broad range of pathogens and trigger innate immune responses. A subset of TLRs recognizes viral components and induces antiviral responses. Whereas TLR4 recognizes viral components at the cell surface, TLR3, TLR7, TLR8, and TLR9 recognize viral nucleic acids on endosomal membrane. After ligand recognition, these members activate their intrinsic signaling pathways and induce type I interferon. In this review, we discuss the recent findings of the viral recognition by TLRs and their signaling pathways. Type I interferon (IFN), 2The abbreviations used are: IFN, interferon; IRF, IFN regulatory factor; RLH, RIG-I-like helicase; TLR, Toll-like receptor; ds, double-stranded; ss, single-stranded; TIR, Toll/IL-1 receptor; IL, interleukin; IRAK, IL-1R-associated kinase; TRAF, tumor necrosis factor receptor-associated factor; TAK, transforming growth factor-β-activated kinase; NEMO, NF-κB essential modulator; IKK, IκB kinase; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell; RIP, receptor-interacting protein; LPS, lipopolysaccharide.2The abbreviations used are: IFN, interferon; IRF, IFN regulatory factor; RLH, RIG-I-like helicase; TLR, Toll-like receptor; ds, double-stranded; ss, single-stranded; TIR, Toll/IL-1 receptor; IL, interleukin; IRAK, IL-1R-associated kinase; TRAF, tumor necrosis factor receptor-associated factor; TAK, transforming growth factor-β-activated kinase; NEMO, NF-κB essential modulator; IKK, IκB kinase; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell; RIP, receptor-interacting protein; LPS, lipopolysaccharide. which was first discovered by Isaacs and Lindenmann in 1957 (1Isaacs A. Lindenmann J. Proc. R. Soc. Lond. B Biol. Sci. 1957; 147: 258-267Crossref PubMed Google Scholar), derives its name from a function to “interfere” in viral replication. Type I IFNs are encoded by more than 13 IFN-α subfamily genes, a single IFN-β gene, and others, such as IFN-ω, -ϵ, and -κ. Type I IFNs are the key cytokines that mediate antiviral responses. Secreted IFNs bind and activate the type I IFN receptor (a heterodimer of IFNAR1 and IFNAR2) in an autocrine and paracrine manner. This binding leads to the activation of IFN-stimulated gene factor 3 (ISGF3; a heterotrimer of signal transducer and activator of transcription 1 (STAT1), STAT2, and IFN regulatory factor 9 (IRF9)), which translocates to the nucleus and induces the transcription of hundreds of effector molecules, called IFN-inducible genes (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). These effector molecules directly influence protein synthesis, cell growth, and survival, in the process of establishing an antiviral state. In addition to the induction of effector proteins, type I IFNs also induce maturation of dendritic cells, enhance antibody responses in B cells, mediate induction of CD8+ T cell responses, and recruit lymphocytes and monocytes to inflamed sites by inducing chemokines. Thus, type I IFNs mediate both innate immune responses and the subsequent development of adaptive immunity to viruses (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). The induction of type I IFNs is triggered by pattern recognition receptors. These receptors recognize conserved molecular patterns characteristic of microorganisms, which are not generated by the host and are essential for microbial survival. The pattern recognition receptors involved in the induction of type I IFNs are divided into two categories: Toll-like receptors (TLRs) and RIG-I-like helicases (RLHs). RLHs are expressed ubiquitously and are localized in the cytosol, where they recognize dsRNA produced upon viral infection. On the other hand, TLRs are located on cell surfaces or in endosomes, where they detect viral components or viral nucleic acid (3Kawai T. Akira S. Nat. Immunol. 2006; 7: 131-137Crossref PubMed Scopus (1408) Google Scholar). Here we review the induction of type I IFNs by TLRs, especially focusing on their signaling pathways. TLRs, a family of evolutionarily conserved pathogen recognition receptors, play a pivotal role in innate immunity. To date, the TLR family consists of 13 mammalian members. The cytoplasmic portions of TLRs show high similarity to that of the interleukin-1 receptor (IL-1R) family and are now called the Toll/IL-1 receptor (TIR) domain. A TIR domain is required to initiate intracellular signaling. The extracellular regions of TLRs and IL-1R are markedly different. Whereas IL-1R possesses an Ig-like domain, TLRs contain leucine-rich repeats in their extracellular domains. TLRs are pattern recognition receptors that sense a wide range of microorganisms, such as bacteria, fungi, protozoa, and viruses. Each TLR has its own intrinsic signaling pathway and induces specific biological responses against microorganisms such as dendritic cell maturation, cytokine production, and the development of adaptive immunity (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). The activation of TLR signaling pathways originates from the cytoplasmic TIR domains. Each TLR mediates distinctive responses in association with a different combination of four TIR domain-containing adapters (MyD88, TIRAP/MAL, TRIF, and TRAM) through the homophilic interaction of TIR domains (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). The association of TLRs with MyD88, which is utilized by all TLRs except TLR3, recruits IL-1R-associated kinase (IRAK)-1 and IRAK-4 and tumor necrosis factor receptor-associated factor 6 (TRAF6). IRAK-1 and TRAF6 then dissociate from this receptor complex and associate with another complex composed of transforming growth factor-β-activated kinase (TAK1) and TAK1-binding proteins 1 (Tab1) and 2 (Tab2). This complex formation leads to the activation of TAK1, which in turn activates the transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) through the canonical IκB kinase (IKK) complex and the mitogen-activated protein kinase pathway, respectively. The kinase activity of the IKK complex is modulated by its IKKγ subunit, the transcription factor NF-κB essential modulator (NEMO). NF-κB activates multiple proinflammatory cytokine genes, including tumor necrosis factor α, IL-6, and IL-1β. In addition to this common pathway, called a MyD88-dependent pathway (Fig. 1), some TLR family members specifically involved in virus recognition have unique signaling pathways to induce type I IFNs (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). TLR3—TLR3 recognizes a synthetic analog of viral dsRNA, polyinosinic acid-cytidylic acid (poly(I·C)), and viral dsRNAs derived from dsRNA viruses such as reovirus or ssRNA viruses such as West Nile virus, respiratory syncytial virus, and encephalomyocarditis virus (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). Although TLR3 is expressed on the cell surface of fibroblasts, it localizes to endosomes in conventional dendritic cells (cDCs), requiring acidification of vesicles for its signaling (4Matsumoto M. Funami K. Tanabe M. Oshiumi H. Shingai M. Seto Y. Yamamoto A. Seya T. J. Immunol. 2003; 171: 3154-3162Crossref PubMed Scopus (617) Google Scholar). The three-dimensional structure of human TLR3 leucine-rich repeat motifs demonstrated direct binding of the TLR3 ectodomain to poly(I·C) (5Choe J. Kelker M.S. Wilson I.A. Science. 2005; 309: 581-585Crossref PubMed Scopus (492) Google Scholar). TLR3 interacts with CD14 and c-Src for ligand uptake and signal transduction (6Lee H.K. Dunzendorfer S. Soldau K. Tobias P.S. Immunity. 2006; 24: 153-163Abstract Full Text Full Text PDF PubMed Scopus (200) Google Scholar, 7Johnsen I.B. Nguyen T.T. Ringdal M. Tryggestad A.M. Bakke O. Lien E. Espevik T. Anthonsen M.W. EMBO J. 2006; 25: 3335-3346Crossref PubMed Scopus (156) Google Scholar). TLR3 signaling activates the transcription factors interferon regulatory factor 3 (IRF3) and NF-κB via the adapter molecule TRIF (8Yamamoto M. Sato S. Hemmi H. Hoshino K. Kaisho T. Sanjo H. Takeuchi O. Sugiyama M. Okabe M. Takeda K. Akira S. Science. 2003; 301: 640-643Crossref PubMed Scopus (2479) Google Scholar, 9Hoebe K. Du X. Georgel P. Janssen E. Tabeta K. Kim S.O. Goode J. Lin P. Mann N. Mudd S. Crozat K. Sovath S. Han J. Beutler B. Nature. 2003; 424: 743-748Crossref PubMed Scopus (1028) Google Scholar) (Fig. 1). TRIF interacts with noncanonical IKKs TBK1 (also called NAK or T2K) and IKKι (also called IKKϵ) through TRAF3 and NAK-associated protein 1 (NAP1), which mediate phosphorylation of IRF3 (10Oganesyan G. Saha S.K. Guo B. He J.Q. Shahangian A. Zarnegar B. Perry A. Cheng G. Nature. 2006; 439: 208-211Crossref PubMed Scopus (705) Google Scholar, 11Hacker H. Redecke V. Blagoev B. Kratchmarova I. Hsu L.C. Wang G.G. Kamps M.P. Raz E. Wagner H. Hacker G. Mann M. Karin M. Nature. 2006; 439: 204-207Crossref PubMed Scopus (733) Google Scholar, 12Sasai M. Oshiumi H. Matsumoto M. Inoue N. Fujita F. Nakanishi M. Seya T. J. Immunol. 2005; 174: 27-30Crossref PubMed Scopus (106) Google Scholar, 13Sharma S. tenOever B.R. Grandvaux N. Zhou G.P. Lin R. Hiscott J. Science. 2003; 300: 1148-1151Crossref PubMed Scopus (1347) Google Scholar). Activated IRF3 translocates into the nucleus and induces expression of IFN-β. TBK1 and, to a lesser extent, IKKι are responsible for TRIF-mediated IFN-β induction (14Hemmi H. Takeuchi O. Sato S. Yamamoto M. Kaisho T. Sanjo H. Kawai T. Hoshino K. Takeda K. Akira S. J. Exp. Med. 2004; 199: 1641-1650Crossref PubMed Scopus (460) Google Scholar, 15Perry A.K. Chow E.K. Goodnough J.B. Yeh W.C. Cheng G. J. Exp. Med. 2004; 199: 1651-1658Crossref PubMed Scopus (307) Google Scholar). In addition to TBK1/IKKι, phosphatidylinositol 3-kinase and its downstream kinase Akt are necessary for full activation of IRF3 (16Sarkar S.N. Peters K.L. Elco C.P. Sakamoto S. Pal S. Sen G.C. Nat. Struct. Mol. Biol. 2004; 11: 1060-1067Crossref PubMed Scopus (306) Google Scholar). TRAF1 and TRAF4 interact with TRIF and negatively regulate TRIF-mediated signaling pathways (17Su X. Li S. Meng M. Qian W. Xie W. Chen D. Zhai Z. Shu H.B. Eur. J. Immunol. 2006; 36: 199-206Crossref PubMed Scopus (51) Google Scholar, 18Takeshita F. Ishii K.J. Kobiyama K. Kojima Y. Coban C. Sasaki S. Ishii N. Klinman D.M. Okuda K. Akira S. Suzuki K. Eur. J. Immunol. 2005; 35: 2477-2485Crossref PubMed Scopus (80) Google Scholar). Furthermore, IRF3 activation is negatively regulated by the peptidyl-prolyl isomerase Pin1 (19Saitoh T. Tun-Kyi A. Ryo A. Yamamoto M. Finn G. Fujita T. Akira S. Yamamoto N. Lu K.P. Yamaoka S. Nat. Immunol. 2006; 7: 598-605Crossref PubMed Scopus (252) Google Scholar). Receptor-interacting protein-1 (RIP1) binds the C terminus of TRIF via a Rip homotypic interaction motif and mediates the TLR3-mediated NF-κB but not IRF3 activation (20Meylan E. Burns K. Hofmann K. Blancheteau V. Martinon F. Kelliher M. Tschopp J. Nat. Immunol. 2004; 5: 503-507Crossref PubMed Scopus (657) Google Scholar). TRAF6 binds the N terminus of TRIF and cooperatively activates NF-κB (21Sato S. Sugiyama M. Yamamoto M. Watanabe Y. Kawai T. Takeda K. Akira S. J. Immunol. 2003; 171: 4304-4310Crossref PubMed Scopus (579) Google Scholar). Although NF-κB activation by poly(I·C) is abrogated in TRAF6-deficient fibroblasts, TRIF-mediated signaling pathways were not impaired in TRAF6-deficient macrophages (22Gohda J. Matsumura T. Inoue J. J. Immunol. 2004; 173: 2913-2917Crossref PubMed Scopus (234) Google Scholar). TLR3 signaling was shown to promote cross-priming of T cells, a process that is necessary for the induction of virus-specific T cell responses. In mice, plasmacytoid DCs (pDCs) and CD8+ DCs appear to be the major adenomatous polyposis coli subtypes involved in priming antiviral cytotoxic T lymphocyte. When CD8+ DCs expressing high levels of TLR3 phagocytize the apoptotic bodies of virus-infected or dsRNA-loaded cells, the dsRNA in the apoptotic bodies is recognized by TLR3, triggering the maturation of immature CD8+ DCs that are required for the subsequent induction of antigen-specific CD4+ and CD8+ T cell responses. In addition, type I interferons released from virus-infected cells facilitate cross-priming (23Schulz O. Diebold S.S. Chen M. Naslund T.I. Nolte M.A. Alexopoulou L. Azuma Y.T. Flavell R.A. Liljestrom P. Reis e Sousa C. Nature. 2005; 433: 887-892Crossref PubMed Scopus (733) Google Scholar). In contrast to RLHs, cytoplasmic receptors for dsRNA, TLR3 plays a crucial role in the cross-priming of cytotoxic T lymphocytes against viruses that do not directly infect DCs. The functions of TLR3 have been elucidated in actual viral infections. TLR3-deficient mice showed susceptibility to mouse cytomegalovirus infection because of reduced interferon production (24Tabeta K. Georgel P. Janssen E. Du X. Hoebe K. Crozat K. Mudd S. Shamel L. Sovath S. Goode J. Alexopoulou L. Flavell R.A. Beutler B. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3516-3521Crossref PubMed Scopus (796) Google Scholar). However, TLR3-deficient mice were resistant to West Nile virus infection. This ssRNA flavivirus induces inflammatory responses in a TLR3-dependent manner that trigger a breakdown of the blood-brain barrier, which subsequently results in enhanced brain infection (25Wang T. Town T. Alexopoulou L. Anderson J.F. Fikrig E. Flavell R.A. Nat. Med. 2004; 10: 1366-1373Crossref PubMed Scopus (896) Google Scholar). These results are quite interesting, revealing that TLR3-mediated inflammatory responses to West Nile virus contribute to pathogenesis rather than to protection. TLR4—TLR4, the first mammalian homologue of the Drosophila Toll protein (26Medzhitov R. Preston-Hurlburt P. Janeway C.J. Nature. 1997; 388: 394-397Crossref PubMed Scopus (4393) Google Scholar) recognizes lipopolysaccharide (LPS), which is a cell wall component of Gram-negative bacteria (27Poltorak A. He X. Smirnova I. Liu M.Y. Van Huffel C. Du X. Birdwell D. Alejos E. Silva M. Galanos C. Freudenberg M. Ricciardi-Castagnoli P. Layton B. Beutler B. Science. 1998; 282: 2085-2088Crossref PubMed Scopus (6397) Google Scholar, 28Hoshino K. Takeuchi O. Kawai T. Sanjo H. Ogawa T. Takeda Y. Takeda K. Akira S. J. Immunol. 1999; 162: 3749-3752PubMed Google Scholar). TLR4 recognizes not only bacterial components but also viral proteins, such as the fusion (F) protein from respiratory syncytial virus and the envelope protein of mouse mammary tumor virus (29Kurt-Jones E.A. Popova L. Kwinn L. Haynes L.M. Jones L.P. Tripp R.A. Walsh E.E. Freeman M.W. Golenbock D.T. Anderson L.J. Finberg R.W. Nat. Immunol. 2000; 1: 398-401Crossref PubMed Scopus (1327) Google Scholar, 30Rassa J.C. Meyers J.L. Zhang Y. Kudaravalli R. Ross S.R. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 2281-2286Crossref PubMed Scopus (340) Google Scholar). TLR4-mutated C3H/HeJ mice are sensitive to respiratory syncytial virus infection (31Haynes L.M. Moore D.D. Kurt-Jones E.A. Finberg R.W. Anderson L.J. Tripp R.A. J. Virol. 2001; 75: 10730-10737Crossref PubMed Scopus (403) Google Scholar). In addition to proinflammatory signals, TLR4 possesses TRIF-mediated signaling pathways (8Yamamoto M. Sato S. Hemmi H. Hoshino K. Kaisho T. Sanjo H. Takeuchi O. Sugiyama M. Okabe M. Takeda K. Akira S. Science. 2003; 301: 640-643Crossref PubMed Scopus (2479) Google Scholar, 9Hoebe K. Du X. Georgel P. Janssen E. Tabeta K. Kim S.O. Goode J. Lin P. Mann N. Mudd S. Crozat K. Sovath S. Han J. Beutler B. Nature. 2003; 424: 743-748Crossref PubMed Scopus (1028) Google Scholar) (Fig. 1). Unlike TLR3, this pathway requires an additional adapter molecule, TRAM (32Yamamoto M. Sato S. Hemmi H. Uematsu S. Hoshino K. Kaisho T. Takeuchi O. Takeda K. Akira S. Nat. Immunol. 2003; 4: 1144-1150Crossref PubMed Scopus (817) Google Scholar). TRAM is localized in the plasma membrane and the Golgi apparatus, where it colocalizes with TLR4. The N terminus of TRAM has a myristoylation site, mutation of which alters its normal membrane localization and abolishes TLR4 signaling, suggesting that TRAM acts as a bridging adapter between TLR4 and TRIF (33Rowe D.C. McGettrick A.F. Latz E. Monks B.G. Gay N.J. Yamamoto M. Akira S. O'Neill L.A. Fitzgerald K.A. Golenbock D.T. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 6299-6304Crossref PubMed Scopus (208) Google Scholar). It has also been reported that phosphorylation of TRAM by PKCϵ is crucial for the activation of IRF3 and the induction of IFN-inducible genes (34McGettrick A.F. Brint E.K. Palsson-McDermott E.M. Rowe D.C. Golenbock D.T. Gay N.J. Fitzgerald K.A. O'Neill L.A. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 9196-9201Crossref PubMed Scopus (108) Google Scholar). TRIF is also required for the induction of inflammatory cytokines in the TLR4 signaling pathway (8Yamamoto M. Sato S. Hemmi H. Hoshino K. Kaisho T. Sanjo H. Takeuchi O. Sugiyama M. Okabe M. Takeda K. Akira S. Science. 2003; 301: 640-643Crossref PubMed Scopus (2479) Google Scholar, 9Hoebe K. Du X. Georgel P. Janssen E. Tabeta K. Kim S.O. Goode J. Lin P. Mann N. Mudd S. Crozat K. Sovath S. Han J. Beutler B. Nature. 2003; 424: 743-748Crossref PubMed Scopus (1028) Google Scholar). Similar to TLR3 signaling, TRAF6 and RIP1 bind to TRIF and are involved in TLR4-mediated NF-κB activation (20Meylan E. Burns K. Hofmann K. Blancheteau V. Martinon F. Kelliher M. Tschopp J. Nat. Immunol. 2004; 5: 503-507Crossref PubMed Scopus (657) Google Scholar, 21Sato S. Sugiyama M. Yamamoto M. Watanabe Y. Kawai T. Takeda K. Akira S. J. Immunol. 2003; 171: 4304-4310Crossref PubMed Scopus (579) Google Scholar). However, cells doubly deficient in TRAF6 and MyD88 still show partially activated NF-κB in response to LPS, suggesting that TRIF activates NF-κB through both TRAF6-dependent and -independent pathways of TLR4 signaling (22Gohda J. Matsumura T. Inoue J. J. Immunol. 2004; 173: 2913-2917Crossref PubMed Scopus (234) Google Scholar, 35Kawai T. Takeuchi O. Fujita T. Inoue J. Muhlradt P.F. Sato S. Hoshino K. Akira S. J. Immunol. 2001; 167: 5887-5894Crossref PubMed Scopus (894) Google Scholar). Although responses to LPS were normal in the absence of RIP1, LPS fails to stimulate NF-κB activation in rip –/– MyD88 –/– cells, revealing that RIP1 is required for the TRIF-dependent TLR4-induced NF-κB pathway (20Meylan E. Burns K. Hofmann K. Blancheteau V. Martinon F. Kelliher M. Tschopp J. Nat. Immunol. 2004; 5: 503-507Crossref PubMed Scopus (657) Google Scholar). Specific Pathways in pDCs—pDCs are specialized for producing large amounts of type I IFNs during most viral infections (36Liu Y.J. Annu. Rev. Immunol. 2005; 23: 275-306Crossref PubMed Scopus (1318) Google Scholar). Whereas conventional DCs (cDCs) preferentially express TLR3, TLR8, and low levels of TLR2 and TLR4, pDCs express high levels of TLR7 and TLR9 in humans. Bacterial DNA, which contains unmethylated CpG motifs, is a strong activator of host immunity. In vertebrates, the frequency of CpG motifs is remarkably reduced, and the cysteine residues of CpG motifs are highly methylated, leading to abrogation of immunostimulatory activity. TLR9 mediates the recognition of CpG DNA (37Hemmi H. Takeuchi O. Kawai T. Kaisho T. Sato S. Sanjo H. Matsumoto M. Hoshino K. Wagner H. Takeda K. Akira S. Nature. 2000; 408: 740-745Crossref PubMed Scopus (5323) Google Scholar). CpG DNA motifs are also found in the genomes of DNA viruses. Mouse pDCs produce IFN-α by recognizing the CpG-containing DNA of herpes simplex virus type 2 (HSV-2) via TLR9 (38Lund J. Sato A. Akira S. Medzhitov R. Iwasaki A. J. Exp. Med. 2003; 198: 513-520Crossref PubMed Scopus (1001) Google Scholar). TLR9-deficient mice were also shown to be susceptible to mouse cytomegalovirus infection, suggesting that TLR9 induces antiviral responses by sensing the CpG-containing DNA of DNA viruses (24Tabeta K. Georgel P. Janssen E. Du X. Hoebe K. Crozat K. Mudd S. Shamel L. Sovath S. Goode J. Alexopoulou L. Flavell R.A. Beutler B. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3516-3521Crossref PubMed Scopus (796) Google Scholar, 39Krug A. French A.R. Barchet W. Fischer J.A. Dzionek A. Pingel J.T. Orihuela M.M. Akira S. Yokoyama W.M. Colonna M. Immunity. 2004; 21: 107-119Abstract Full Text Full Text PDF PubMed Scopus (598) Google Scholar, 40Krug A. Luker G.D. Barchet W. Leib D.A. Akira S. Colonna M. Blood. 2004; 103: 1433-1437Crossref PubMed Scopus (568) Google Scholar). TLR7 and TLR8 are structurally highly conserved proteins (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). The synthetic imidazoquinoline-like molecules imiquimod (R837) and resiquimod (R848) have potent antiviral activities and are used clinically for the treatment of viral infections. Murine TLR7 and human TLR7 and TLR8 recognize imidazoquinoline compounds (41Hemmi H. Kaisho T. Takeuchi O. Sato S. Sanjo H. Hoshino K. Horiuchi T. Tomizawa H. Takeda K. Akira S. Nat. Immunol. 2002; 3: 196-200Crossref PubMed Scopus (2044) Google Scholar, 42Ito T. Amakawa R. Kaisho T. Hemmi H. Tajima K. Uehira K. Ozaki Y. Tomizawa H. Akira S. Fukuhara S. J. Exp. Med. 2002; 195: 1507-1512Crossref PubMed Scopus (411) Google Scholar). Furthermore, murine TLR7 has been shown to recognize guanosine analogs such as loxoribine, which has antiviral and anti-tumor activities (2Akira S. Uematsu S. Takeuchi O. Cell. 2006; 124: 783-801Abstract Full Text Full Text PDF PubMed Scopus (8607) Google Scholar). Recently, TLR7 and human TLR8 have been shown to recognize guanosine- or uridine-rich ssRNA from viruses such as human immunodeficiency virus, vesicular stomatitis virus, and influenza virus (43Diebold S.S. Kaisho T. Hemmi H. Akira S. Reis E. Sousa C. Science. 2004; 303: 1529-1531Crossref PubMed Scopus (2701) Google Scholar, 44Heil F. Hemmi H. Hochrein H. Ampenberger F. Kirschning C. Akira S. Lipford G. Wagner H. Bauer S. Science. 2004; 303: 1526-1529Crossref PubMed Scopus (3007) Google Scholar). The induction of type I IFNs by TLR7 and TLR9 depends entirely on MyD88 in pDCs (45Hemmi H. Kaisho T. Takeda K. Akira S. J. Immunol. 2003; 170: 3059-3064Crossref PubMed Scopus (298) Google Scholar) (Fig. 2). IRF7 is a transcription factor that is structurally related to IRF3 and is expressed constitutively in pDCs. IRF7 forms a signaling complex with MyD88 and TRAF6 in the cytoplasm (46Kawai T. Sato S. Ishii K.J. Coban C. Hemmi H. Yamamoto M. Terai K. Matsuda M. Inoue J. Uematsu S. Takeuchi O. Akira S. Nat. Immunol. 2004; 5: 1061-1068Crossref PubMed Scopus (822) Google Scholar, 47Honda K. Yanai H. Mizutani T. Negishi H. Shimada N. Suzuki N. Ohba Y. Takaoka A. Yeh W.C. Taniguchi T. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 15416-15421Crossref PubMed Scopus (424) Google Scholar). In this complex, TRAF6 activates IRF7 through its ubiquitin E3 ligase activity (46Kawai T. Sato S. Ishii K.J. Coban C. Hemmi H. Yamamoto M. Terai K. Matsuda M. Inoue J. Uematsu S. Takeuchi O. Akira S. Nat. Immunol. 2004; 5: 1061-1068Crossref PubMed Scopus (822) Google Scholar). After ligand stimulation, IRF7 is activated by its phosphorylation in TBK1/IKKι-independent manner and translocates into the nucleus to induce the expression of type I IFNs (46Kawai T. Sato S. Ishii K.J. Coban C. Hemmi H. Yamamoto M. Terai K. Matsuda M. Inoue J. Uematsu S. Takeuchi O. Akira S. Nat. Immunol. 2004; 5: 1061-1068Crossref PubMed Scopus (822) Google Scholar, 47Honda K. Yanai H. Mizutani T. Negishi H. Shimada N. Suzuki N. Ohba Y. Takaoka A. Yeh W.C. Taniguchi T. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 15416-15421Crossref PubMed Scopus (424) Google Scholar, 48Matsui K. Kumagai Y. Kato H. Sato S. Kawagoe T. Uematsu S. Takeuchi O. Akira S. J. Immunol. 2006; 177: 5785-5789Crossref PubMed Scopus (72) Google Scholar). Mouse pDCs lacking IRAK-4 fail to produce both inflammatory cytokines and IFNs-α (47Honda K. Yanai H. Mizutani T. Negishi H. Shimada N. Suzuki N. Ohba Y. Takaoka A. Yeh W.C. Taniguchi T. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 15416-15421Crossref PubMed Scopus (424) Google Scholar). Human TLR7-, TLR8-, and TLR9-mediated induction of IFN-α/β and IFN-λ was also IRAK-4-dependent (49Yang K. Puel A. Zhang S. Eidenschenk C. Ku C.L. Casrouge A. Picard C. von Bernuth H. Senechal B. Plancoulaine S. Al-Hajjar S. Al-Ghonaium A. Marodi L. Davidson D. Speert D. Roifman C. Garty B.Z. Ozinsky A. Barrat F.J. Coffman R.L. Miller R.L. Li X. Lebon P. Rodriguez-Gallego C. Chapel H. Geissmann F. Jouanguy E. Casanova J.L. Immunity. 2005; 23: 465-478Abstract Full Text Full Text PDF PubMed Scopus (235) Google Scholar). In mice, IRAK-1 has been shown to serve as an IRF7 kinase. IRF7 activation by TLR9 ligand is impaired in IRAK-1-deficient mice, despite normal NF-κB activation. IRAK-1, but not IRAK-4, can directly bind and phosphorylate IRF7; thus, IRAK-1 specifically mediates IFN-α induction downstream of MyD88 and IRAK-4 (50Uematsu S. Sato S. Yamamoto M. Hirotani T. Kato H. Takeshita F. Matsuda M. Coban C. Ishii K.J. Kawai T. Takeuchi O. Akira S. J. Exp. Med. 2005; 201: 915-923Crossref PubMed Scopus (414) Google Scholar). In addition to IRAKs, IKKα has been shown to be essential for the phosphorylation of IRF7, suggesting that the IRAK-4/IRAK-1/IKKα kinase cascade might lead to the full activation of IRF7 (51Hoshino K. Sugiyama T. Matsumoto M. Tanaka T. Saito M. Hemmi H. Ohara O. Akira S. Kaisho T. Nature. 2006; 440: 949-953Crossref PubMed Scopus (298) Google Scholar). To elucidate the mechanism of IRF7 phosphorylation more precisely, analysis of mice expressing kinase-negative mutants of these molecules will be necessary in the near future. Recently, TRAF3 and osteopontin have also been shown to be involved in this signaling pathway (10Oganesyan G. Saha S.K. Guo B. He J.Q. Shahangian A. Zarnegar B. Perry A. Cheng G. Nature. 2006; 439: 208-211Crossref PubMed Scopus (705) Google Scholar, 11Hacker H. Redecke V. Blagoev B. Kratchmarova I. Hsu L.C. Wang G.G. Kamps M.P. Raz E. Wagner H. Hacker G. Mann M. Karin M. Nature. 2006; 439: 204-207Crossref PubMed Scopus (733) Google Scholar, 52Shinohara M.L. Lu L. Bu J. Werneck M.B. Kobayashi K.S. Glimcher L.H. Cantor H. Nat. Immunol. 2006; 7: 498-506Crossref PubMed Scopus (298) Google Scholar). The TLR9 ligands, CpG DNA, are divided into at least three distinct classes with different biological effects (53Klinman D.M. Nat. Rev. Immunol. 2004; 4: 249-258Crossref PubMed Scopus (812) Google Scholar). Conventional CpG DNA, also called K/B-type CpG DNA, has a potency to activate B cells and induces inflammatory cytokines from macrophages. D/A-type CpG DNA shows a weaker activity on B cells or macrophages but induces robust production of type I IFNs from pDCs. In addition, C-type CpG DNA mediates the induction of type I IFNs, as well as B cell activation, but its potency in both effects is moderate (54Ishii K.J. Akira S. Trends Immunol. 2006; 27: 525-532Abstract Full Text Full Text PDF PubMed Scopus (187) Google Scholar). It remains unknown how different TLR9 agonists lead to such distinct outcomes. The importance of prolonged localization of a TLR9 ligand in an endosome has been suggested (55Honda K. Ohba Y. Yanai H. Negishi H. Mizutani T. Takaoka A. Taya C. Taniguchi T. Nature. 2005; 434: 1035-1040Crossref PubMed Scopus (735) Google Scholar). K/B-type CpG DNA is rapidly transferred and degraded in the lysosome, whereas D/A-type CpG DNA is retained in the endosomes of pDCs. These results suggest that the endosomal retention of ligands in pDCs probably provides a platform for the interactions of signal-transducing molecules such as MyD88 and IRF7. However, this hypothesis does not fully explain the ligand specificity. If the endosomal retention of a ligand enhances its signaling, it is easy to assume that D/A-type CpG DNA induces robust production of inflammatory cytokines as well as IFN-α. As is generally known, D/A-type CpG DNA shows lower efficacy in the induction of proinflammatory cytokines than K/B-type CpG DNA. Furthermore, K/B-type CpG DNA even induces a certain amount of IFN-α from pDCs at lower concentrations (45Hemmi H. Kaisho T. Takeda K. Akira S. J. Immunol. 2003; 170: 3059-3064Crossref PubMed Scopus (298) Google Scholar). In IRAK-1-deficient pDCs, both K/B-type- and A/D-type-mediated IFN-α induction was severely impaired (50Uematsu S. Sato S. Yamamoto M. Hirotani T. Kato H. Takeshita F. Matsuda M. Coban C. Ishii K.J. Kawai T. Takeuchi O. Akira S. J. Exp. Med. 2005; 201: 915-923Crossref PubMed Scopus (414) Google Scholar), suggesting that an additional mechanism exists to determine the distinct response to each type of CpG DNA. K/B-type CpG DNA-mediated IFN-β Induction in cDCs—Granulocyte macrophage-colony-stimulating factor-induced DCs produce a small amount of IFN-β, but not IFN-α, in response to K/B-type CpG DNA (45Hemmi H. Kaisho T. Takeda K. Akira S. J. Immunol. 2003; 170: 3059-3064Crossref PubMed Scopus (298) Google Scholar). Neither IRF7 nor IRF3 is essential for this signaling pathway (56Negishi H. Fujita Y. Yanai H. Sakaguchi S. Ouyang X. Shinohara M. Takayanagi H. Ohba Y. Taniguchi T. Honda K. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 15136-15141Crossref PubMed Scopus (245) Google Scholar) (Fig. 2). A recent report showed that IRF1 specifically participates in induction of the IFN-β gene in this signaling pathway. IRF1 is induced by IFN-γ stimulation. After ligand stimulation, IRF1 interacts with MyD88, is activated by an unknown mechanism, and translocates into the nucleus to induce the expression of IFN-β, inducible nitric-oxide synthase, and IL-12 p35 (56Negishi H. Fujita Y. Yanai H. Sakaguchi S. Ouyang X. Shinohara M. Takayanagi H. Ohba Y. Taniguchi T. Honda K. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 15136-15141Crossref PubMed Scopus (245) Google Scholar). Furthermore, IRF1 is not essential for the TRIF-dependent pathway or the TLR9-mediated pathway in pDCs. Thus, the induction of type I IFNs by CpG DNA is quite distinct between cDCs and pDCs. The study of innate immunity has progressed rapidly over the last decade. TLR family members, which were initially considered to be receptors for bacterial components, have been shown to be involved in viral recognition and subsequent induction of type I IFNs, which are the most important antiviral agents. Simultaneously, pDCs have been identified as professional interferon-producing cells, which play crucial roles during viral infection. It has become clear that TLRs are the major receptors for the initiation of type I IFN production in pDCs (57Kato H. Sato S. Yoneyama M. Yamamoto M. Uematsu S. Matsui K. Tsujimura T. Takeda K. Fujita T. Takeuchi O. Akira S. Immunity. 2005; 23: 19-28Abstract Full Text Full Text PDF PubMed Scopus (1100) Google Scholar). In the process of these studies, evidence has been obtained that non-professional interferon-producing cells, such as cDCs and epithelial cells, can produce type I IFNs in a TLR-independent manner. All of these results led to the discovery of RLH family members, the functions and signaling pathways of which are currently among the hottest topics in immunology. Although antiviral responses have been well clarified at the cellular level, it remains unknown when, how, and in what kind of cells TLR and RLH systems are used to exclude viruses. It will be necessary to examine the functions of TLRs and RLHs dynamically by using various viral infection models in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunliyan发布了新的文献求助10
刚刚
刚刚
七七完成签到,获得积分10
刚刚
1秒前
SciGPT应助罗C采纳,获得10
1秒前
1秒前
1秒前
2秒前
just发布了新的文献求助10
2秒前
李健的小迷弟应助Huang1xin采纳,获得30
2秒前
3秒前
沉默的盼夏完成签到,获得积分10
3秒前
可爱的函函应助爱笑以山采纳,获得10
3秒前
mm应助乐邦詹士采纳,获得10
4秒前
gao发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
wanci应助涳域采纳,获得10
4秒前
4秒前
Phineas发布了新的文献求助10
5秒前
大神装完成签到,获得积分10
5秒前
lucky发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助默默的元冬采纳,获得10
6秒前
SciGPT应助六月采纳,获得10
6秒前
6秒前
正月初九发布了新的文献求助10
7秒前
爱宝乐宝福宝完成签到,获得积分10
7秒前
Deml完成签到,获得积分10
7秒前
7秒前
爆米花应助沉默的盼夏采纳,获得10
7秒前
英姑应助刻苦的假发采纳,获得10
7秒前
7秒前
8秒前
知意发布了新的文献求助10
8秒前
8秒前
Zhang完成签到,获得积分10
9秒前
marklee发布了新的文献求助10
9秒前
张张张发布了新的文献求助10
9秒前
nong12123发布了新的文献求助10
9秒前
拾柒完成签到 ,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701298
求助须知:如何正确求助?哪些是违规求助? 5143316
关于积分的说明 15233667
捐赠科研通 4856340
什么是DOI,文献DOI怎么找? 2605819
邀请新用户注册赠送积分活动 1557190
关于科研通互助平台的介绍 1515143