Nuclear Shape and Architecture in Benign Fields Predict Biochemical Recurrence in Prostate Cancer Patients Following Radical Prostatectomy: Preliminary Findings

前列腺切除术 医学 前列腺癌 接收机工作特性 生化复发 癌症 数字化病理学 前列腺 放射科 病理 内科学
作者
George Lee,Robert W. Veltri,Guangjing Zhu,Sahirzeeshan Ali,Jonathan I. Epstein,Anant Madabhushi
出处
期刊:European urology focus [Elsevier BV]
卷期号:3 (4-5): 457-466 被引量:53
标识
DOI:10.1016/j.euf.2016.05.009
摘要

Background Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) and assessment of prognosis following radical prostatectomy (RP), but it does not account for patterns in neighboring normal-appearing benign fields that may be predictive of disease recurrence. Objective To investigate (1) whether computer-extracted image features within tumor-adjacent benign regions on digital pathology images could predict recurrence in PCa patients after surgery and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence compared with Gleason score or features from benign or cancerous regions alone. Design, setting, and participants We studied 140 tissue microarray cores (0.6 mm each) from 70 PCa patients following surgery between 2000 and 2004 with up to 14 yr of follow-up. Overall, 22 patients experienced recurrence (biochemical [prostate-specific antigen], local, or distant recurrence and cancer death) and 48 did not. Intervention RP was performed in all patients. Outcome measurements and statistical analysis The top 10 features identified as most predictive of recurrence within both the benign and cancerous regions were combined into a 10-feature signature (TABS). Computer-extracted nuclear shape and architectural features from cancerous regions, adjacent benign fields, and TABS were evaluated via random forest classification accuracy and Kaplan-Meier survival analysis. Results and limitations Tumor-adjacent benign field features were predictive of recurrence (area under the receiver operating characteristic curve [AUC]: 0.72). Tumor-field nuclear shape descriptors and benign-field local nuclear arrangement were the predominant features found for TABS (AUC: 0.77). Combining TABS with Gleason sum further improved identification of recurrence (AUC: 0.81). All experiments were performed using threefold cross-validation without independent test set validation. Conclusions Computer-extracted nuclear features within cancerous and benign regions predict recurrence following RP. Furthermore, TABS was shown to provide added value to common predictors including Gleason sum and Kattan and Stephenson nomograms. Patient summary Future studies may benefit from evaluation of benign regions proximal to the tumor on surgically excised prostate cancer tissue for assessing risk of disease recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI5应助小文采纳,获得10
5秒前
5秒前
7秒前
叶世玉发布了新的文献求助10
9秒前
tianwu发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
药小博完成签到,获得积分10
13秒前
科目三应助菜宝儿采纳,获得30
15秒前
CipherSage应助wjr采纳,获得10
17秒前
xgx984发布了新的文献求助10
17秒前
小文发布了新的文献求助10
17秒前
CipherSage应助风中的寻凝采纳,获得10
18秒前
Oracle应助ShengQ采纳,获得20
20秒前
小二郎应助豆子采纳,获得10
22秒前
海豚完成签到,获得积分10
22秒前
SYF发布了新的文献求助30
25秒前
清秀千兰完成签到,获得积分10
26秒前
29秒前
笑点低半仙给笑点低半仙的求助进行了留言
29秒前
大排量发布了新的文献求助10
29秒前
zmw完成签到,获得积分10
30秒前
小文完成签到,获得积分10
33秒前
海豚发布了新的文献求助10
33秒前
搜集达人应助xxn采纳,获得10
34秒前
yelis完成签到,获得积分10
36秒前
36秒前
威武从寒发布了新的文献求助20
36秒前
36秒前
xio完成签到,获得积分10
37秒前
852应助兴奋的蜡烛采纳,获得10
37秒前
研友_VZG7GZ应助英俊白莲采纳,获得30
37秒前
38秒前
安生完成签到,获得积分10
41秒前
lone623发布了新的文献求助10
41秒前
Ray发布了新的文献求助10
41秒前
乐乐应助大力水饺采纳,获得10
42秒前
43秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830