Joint Statistical Iterative Material Image Reconstruction for Spectral Computed Tomography Using a Semi-Empirical Forward Model

迭代重建 计算机科学 探测器 算法 断层重建 能量(信号处理) 断层摄影术 投影(关系代数) 医学影像学 光子计数 噪音(视频) 迭代法 计算机视觉 人工智能 数学 光学 图像(数学) 物理 统计 电信
作者
Korbinian Mechlem,Sebastian Ehn,Thorsten Sellerer,Eva Braig,Daniela Münzel,Franz Pfeiffer,Peter B. Noël
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 68-80 被引量:91
标识
DOI:10.1109/tmi.2017.2726687
摘要

By acquiring tomographic measurements with several distinct photon energy spectra, spectral computed tomography (spectral CT) is able to provide additional material-specific information compared with conventional CT. This information enables the generation of material selective images, which have found various applications in medical imaging. However, material decomposition typically leads to noise amplification and a degradation of the signal-to-noise ratio. This is still a fundamental problem of spectral CT, especially for low-dose medical applications. Inspired by the success for low-dose conventional CT, several statistical iterative reconstruction algorithms for spectral CT have been developed. These algorithms typically rely on detailed knowledge about the spectrum and the detector response. Obtaining this knowledge is often difficult in practice, especially if photon counting detectors are used to acquire the energy specific information. In this paper, a new algorithm for joint statistical iterative material image reconstruction is presented. It relies on a semi-empirical forward model which is tuned by calibration measurements. This strategy allows to model spatially varying properties of the imaging system without requiring detailed prior knowledge of the system parameters. We employ an efficient optimization algorithm based on separable surrogate functions to accelerate convergence and reduce the reconstruction time. Numerical as well as real experiments show that our new algorithm leads to reduced statistical bias and improved image quality compared with projection-based material decomposition followed by analytical or iterative image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居居子完成签到,获得积分10
刚刚
淡定自中发布了新的文献求助10
1秒前
1秒前
懒大王发布了新的文献求助10
2秒前
四菇娘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
CipherSage应助浅学者采纳,获得10
3秒前
Alice0210发布了新的文献求助10
3秒前
眼睛大的比巴卜完成签到,获得积分20
5秒前
5秒前
5秒前
77关注了科研通微信公众号
7秒前
火星上的冰岚完成签到,获得积分10
7秒前
乐乐应助xialuoke采纳,获得10
8秒前
9秒前
李大橘发布了新的文献求助10
10秒前
迟山完成签到 ,获得积分10
10秒前
11秒前
张宇豪完成签到,获得积分10
11秒前
11秒前
dm11发布了新的文献求助10
12秒前
12秒前
13秒前
小佳完成签到,获得积分10
14秒前
14秒前
Hello应助四菇娘采纳,获得10
15秒前
mxczsl完成签到,获得积分10
15秒前
15秒前
Lee发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
wxy发布了新的文献求助10
17秒前
阳先森发布了新的文献求助10
17秒前
77发布了新的文献求助10
18秒前
xuxin完成签到 ,获得积分10
18秒前
19秒前
19秒前
小佳发布了新的文献求助10
21秒前
ivyjianjie完成签到,获得积分10
21秒前
西瓜皮完成签到 ,获得积分10
21秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043