Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT

脂肪组织 医学 心包 放射科 冠状动脉疾病 动脉 四分位数 核医学 内科学 心脏病学 置信区间
作者
Frédéric Commandeur,Markus Goeller,Julián Betancur,Sebastien Cadet,Mhairi Doris,Xi Chen,Daniel S. Berman,Piotr J. Slomka,Balaji Tamarappoo,Damini Dey
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (8): 1835-1846 被引量:187
标识
DOI:10.1109/tmi.2018.2804799
摘要

Epicardial adipose tissue (EAT) is a visceral fat deposit related to coronary artery disease. Fully automated quantification of EAT volume in clinical routine could be a timesaving and reliable tool for cardiovascular risk assessment. We propose a new fully automated deep learning framework for EAT and thoracic adipose tissue (TAT) quantification from non-contrast coronary artery calcium computed tomography (CT) scans. The first multi-task convolutional neural network (ConvNet) is used to determine heart limits and perform segmentation of heart and adipose tissues. The second ConvNet, combined with a statistical shape model, allows for pericardium detection. EAT and TAT segmentations are then obtained from outputs of both ConvNets. We evaluate the performance of the method on CT data sets from 250 asymptomatic individuals. Strong agreement between automatic and expert manual quantification is obtained for both EAT and TAT with median Dice score coefficients of 0.823 (inter-quartile range (IQR): 0.779-0.860) and 0.905 (IQR: 0.862-0.928), respectively; with excellent correlations of 0.924 and 0.945 for EAT and TAT volumes. Computations are performed in <6 s on a standard personal computer for one CT scan. Therefore, the proposed method represents a tool for rapid fully automated quantification of adipose tissue and may improve cardiovascular risk stratification in patients referred for routine CT calcium scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
chris chen发布了新的文献求助10
7秒前
7秒前
7秒前
小蘑菇应助Twilight采纳,获得10
8秒前
9秒前
9秒前
仁爱的雁荷完成签到,获得积分10
9秒前
11秒前
11秒前
张mingyu123发布了新的文献求助30
12秒前
12秒前
上官若男应助好蓝采纳,获得10
13秒前
wanci应助lu采纳,获得10
13秒前
EWFDSC发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
无极微光应助Mcccccc采纳,获得20
15秒前
冥溟完成签到,获得积分10
16秒前
清脆迎曼应助xww采纳,获得10
16秒前
16秒前
丘比特应助nino采纳,获得10
16秒前
wweq发布了新的文献求助10
17秒前
核桃发布了新的文献求助10
17秒前
渣渣一个发布了新的文献求助10
18秒前
19秒前
22秒前
我是老大应助Heisenberg采纳,获得10
22秒前
23秒前
acarbose发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
幸运星完成签到,获得积分10
23秒前
simple发布了新的文献求助10
23秒前
科研通AI6应助大气的妙旋采纳,获得10
24秒前
24秒前
哈赤完成签到 ,获得积分10
24秒前
浮游应助yoyo112233采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351