A Novel Nomogram and Risk Classification System Predicting the Cancer-Specific Survival of Patients with Initially Diagnosed Metastatic Esophageal Cancer: A SEER-Based Study

列线图 医学 比例危险模型 肿瘤科 内科学 置信区间 阶段(地层学) 食管癌 癌症 外科肿瘤学 一致性 生物 古生物学
作者
Xin Tang,Xiaojuan Zhou,Yanying Li,Xue Tian,Yongsheng Wang,Meijuan Huang,Li Ren,Lin Zhou,Zhenyu Ding,Jiang Zhu,Yong Xu,Feng Peng,Jin Wang,You Lü,Youling Gong
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:26 (2): 321-328 被引量:76
标识
DOI:10.1245/s10434-018-6929-0
摘要

Metastatic esophageal cancer (mEC) is the end stage of esophageal cancer. We aimed to construct a predictive model predicting the cancer-specific survival (CSS) of mEC patients. Data from 1917 patients with initially diagnosed mEC were extracted from the Surveillance, Epidemiology, and End Results database between 2010 and 2015. Patients were randomly divided into the training and validation cohorts (7:3). Cox regression was conducted to select the predictors of CSS. The validation of the nomogram was performed using concordance index (C-index), calibration curves, and decision curve analyses (DCAs). Cancer-specific death occurred in 1559/1917 (81.3%) cases. Multivariate Cox regression indicated that factors including age, sex, grade at diagnosis, number of metastatic organs at diagnosis, pathological type, local treatment, and chemotherapy were independent predictors of CSS. Based on these factors, a predictive model was built and virtualized by nomogram. The C-index of the nomogram was 0.762. The calibration curves showed good consistency of CSS between the actual observation and the nomogram prediction, and the DCA showed great clinical usefulness of the nomogram. A risk classification system was built that could perfectly classify mEC patients into three risk groups. In the total cohort, the median CSS of patients in the low-, intermediate- and high-risk groups was 11.0 months (95% confidence interval [CI] 10.1–11.9), 8.0 months (95% CI 7.3–8.7), and 2.0 months (95% CI 1.8–2.2), respectively. We constructed a nomogram and a corresponding risk classification system predicting the CSS of patients with initially diagnosed mEC. These tools can assist in patient counseling and guiding treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助悲凉的冰香采纳,获得10
3秒前
机智达完成签到,获得积分10
3秒前
3秒前
了0完成签到 ,获得积分10
5秒前
KaiPing完成签到 ,获得积分10
5秒前
JamesPei应助调皮的西装采纳,获得10
5秒前
迷人的寒风完成签到,获得积分10
6秒前
年少轻狂最情深完成签到 ,获得积分10
7秒前
青岚完成签到,获得积分10
7秒前
常温完成签到,获得积分10
8秒前
LGL发布了新的文献求助10
9秒前
一棵树发布了新的文献求助20
10秒前
KaiPing关注了科研通微信公众号
10秒前
10秒前
11秒前
在望完成签到,获得积分10
11秒前
粱踏歌发布了新的文献求助10
13秒前
15秒前
朔流而上完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
林夕发布了新的文献求助10
18秒前
18秒前
香精完成签到,获得积分10
18秒前
满天星辰独览完成签到 ,获得积分10
18秒前
19秒前
zho发布了新的文献求助10
21秒前
LGL完成签到,获得积分10
22秒前
LaTeXer应助猪的奇妙超能力采纳,获得10
23秒前
慕青应助粱踏歌采纳,获得10
23秒前
wang完成签到,获得积分10
24秒前
荔枝的油饼iKun完成签到,获得积分10
25秒前
无忧迪完成签到,获得积分10
25秒前
幽默的煎饼完成签到,获得积分10
28秒前
赘婿应助安澜采纳,获得10
30秒前
surain完成签到,获得积分10
30秒前
LEE123完成签到,获得积分10
30秒前
Jay完成签到 ,获得积分10
30秒前
可爱邓邓完成签到 ,获得积分10
32秒前
三三完成签到,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351