A Deeper Look at Facial Expression Dataset Bias

判别式 计算机科学 人工智能 一般化 面部表情 模式识别(心理学) 边际分布 机器学习 特征(语言学) 条件概率分布 表达式(计算机科学) 班级(哲学) 数学 统计 哲学 数学分析 随机变量 程序设计语言 语言学
作者
Shan Li,Weihong Deng
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (2): 881-893 被引量:29
标识
DOI:10.1109/taffc.2020.2973158
摘要

Datasets play an important role in the progress of facial expression recognition algorithms, but they may suffer from obvious biases caused by different cultures and collection conditions. To look deeper into this bias, we first conduct comprehensive experiments on dataset recognition and cross-dataset generalization tasks, and for the first time, explore the intrinsic causes of the dataset discrepancy. The results quantitatively verify that current datasets have a strong build-in bias, and corresponding analyses indicate that the conditional probability distributions between source and target datasets are different. However, previous researches are mainly based on shallow features with limited discriminative ability under the assumption that the conditional distribution remains unchanged across domains. To address these issues, we further propose a novel deep Emotion-Conditional Adaption Network (ECAN) to learn domain-invariant and discriminative feature representations, which can match not only the marginal distribution but also the class-conditional distribution across domains by exploring the underlying label information of the target dataset. Moreover, the largely ignored expression class distribution bias is also addressed so that the training and testing domains can share similar class distribution. Extensive cross-database experiments on both lab-controlled datasets (CK+, JAFFE, MMI, and Oulu-CASIA) and real-world databases (AffectNet, FER2013, RAF-DB 2.0, and SFEW 2.0) demonstrate that our ECAN can yield competitive performances across various cross-dataset facial expression recognition tasks and outperform the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangmh应助默默若枫采纳,获得10
刚刚
1秒前
科研通AI5应助淡定的安白采纳,获得10
1秒前
涛涛不觉晓完成签到,获得积分10
1秒前
1秒前
黄徐发布了新的文献求助10
2秒前
小二郎应助fjhsg25采纳,获得10
2秒前
3秒前
科研通AI5应助咚巴拉采纳,获得10
4秒前
去2发布了新的文献求助10
4秒前
一筏长安发布了新的文献求助10
4秒前
4秒前
daisy应助波波采纳,获得10
5秒前
5秒前
吧啦吧啦发布了新的文献求助10
5秒前
万能图书馆应助qq采纳,获得10
6秒前
Jughead发布了新的文献求助10
7秒前
aa完成签到,获得积分10
8秒前
8秒前
科研通AI5应助星星气球采纳,获得10
9秒前
9秒前
wanci应助跳跳糖采纳,获得10
10秒前
10秒前
11秒前
13秒前
绵绵关注了科研通微信公众号
13秒前
killingpaper完成签到,获得积分10
14秒前
15秒前
所所应助柚皘采纳,获得10
15秒前
15秒前
yongziwu完成签到,获得积分10
15秒前
cc发布了新的文献求助10
16秒前
坚定的稚晴完成签到,获得积分10
16秒前
17秒前
慕巧荷发布了新的文献求助10
17秒前
SYLH应助锤飞你是我采纳,获得10
17秒前
科研通AI5应助大气中心采纳,获得10
18秒前
彭彭完成签到,获得积分20
18秒前
科研通AI5应助波波采纳,获得200
19秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208