Mobile genetic element insertions drive antibiotic resistance across pathogens

流动遗传元素 插入顺序 生物 遗传学 计算生物学 基因组 突变 基因 转座因子 突变
作者
Matthew G. Durrant,Michelle M. Li,Ben Siranosian,Ami S. Bhatt
标识
DOI:10.1101/527788
摘要

Abstract Mobile genetic elements contribute to bacterial adaptation and evolution; however, detecting these elements in a high-throughput and unbiased manner remains challenging. Here, we demonstrate a de novo approach to identify mobile elements from short-read sequencing data. The method identifies the precise site of mobile element insertion and infers the identity of the inserted sequence. This is an improvement over previous methods that either rely on curated databases of known mobile elements or rely on ‘split-read’ alignments that assume the inserted element exists within the reference genome. We apply our approach to 12,419 sequenced isolates of nine prevalent bacterial pathogens, and we identify hundreds of known and novel mobile genetic elements, including many candidate insertion sequences. We find that the mobile element repertoire and insertion rate vary considerably across species, and that many of the identified mobile elements are biased toward certain target sequences, several of them being highly specific. Mobile element insertion hotspots often cluster near genes involved in mechanisms of antibiotic resistance, and such insertions are associated with antibiotic resistance in laboratory experiments and clinical isolates. Finally, we demonstrate that mutagenesis caused by these mobile elements contributes to antibiotic resistance in a genome-wide association study of mobile element insertions in pathogenic Escherichia coli . In summary, by applying a de novo approach to precisely identify mobile genetic elements and their insertion sites, we thoroughly characterize the mobile element repertoire and insertion spectrum of nine pathogenic bacterial species and find that mobile element insertions play a significant role in the evolution of clinically relevant phenotypes, such as antibiotic resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助蔡雨岑采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
orixero应助yy采纳,获得10
2秒前
磊大彪完成签到 ,获得积分10
4秒前
Hello应助猛发sci采纳,获得10
4秒前
4秒前
5秒前
佳佳应助zlll采纳,获得10
5秒前
学术垃圾发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
6秒前
善学以致用应助无风采纳,获得10
6秒前
chinbaor完成签到,获得积分10
6秒前
xxxxxu发布了新的文献求助10
7秒前
damiao发布了新的文献求助10
7秒前
Orange应助kai采纳,获得10
7秒前
Yule发布了新的文献求助30
7秒前
7秒前
和谐的数据线完成签到,获得积分10
8秒前
8秒前
娜娜完成签到 ,获得积分10
8秒前
zg完成签到,获得积分10
8秒前
竹马追云完成签到,获得积分10
9秒前
10秒前
赘婿应助小w不熬夜采纳,获得10
10秒前
Tysonqu完成签到 ,获得积分10
10秒前
李李完成签到,获得积分10
11秒前
饱满冥茗完成签到,获得积分10
11秒前
ZeKaWang应助sfliufighting采纳,获得10
11秒前
在水一方应助自己采纳,获得10
12秒前
高贵的迎蕾完成签到,获得积分10
12秒前
科研通AI6应助Demons采纳,获得10
12秒前
13秒前
wujnghao完成签到,获得积分10
13秒前
SciGPT应助Rui采纳,获得10
13秒前
13秒前
JiangZaiqing完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630828
求助须知:如何正确求助?哪些是违规求助? 4723716
关于积分的说明 14975757
捐赠科研通 4789049
什么是DOI,文献DOI怎么找? 2557396
邀请新用户注册赠送积分活动 1518110
关于科研通互助平台的介绍 1478700