Semiautomatic first-arrival picking of microseismic events by using the pixel-wise convolutional image segmentation method

微震 计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 深度学习 工作流程 计算机视觉 地质学 地震学 数据库
作者
Hao Wu,Bo Zhang,Fangyu Li,Naihao Liu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (3): V143-V155 被引量:84
标识
DOI:10.1190/geo2018-0389.1
摘要

Microseismic imaging plays an important role in hydraulic fracture detection, and the first-arrival picking of microseismic events is the bedrock of microseismic imaging. Manual picking is the most reliable and also the most time-consuming method for the detection of the first arrival of microseismic events. Accurate and efficient first-arrival picking in a real noisy environment is a challenge for most of the automatic first-arrival picking methods. We have developed a novel workflow to automatically pick the first arrival of microseismics by using a state-of-the art pixel-wise convolutional image segmentation method. We first form the training data by randomly selecting part of the microseismic traces and manually pick the time index of the first arrivals. Next, we segment the selected traces into two parts according to the time index of manual picking and assign each part a label accordingly. Then, we build an encoder-decoder convolutional neural network architecture and use the training data and training label as the input. Next, we obtain the trained network hierarchy by learning the segmented training data and labels. Finally, we predict the first arrivals of microseismic events by applying the trained network hierarchy to the rest of the microseismic traces. The synthetic and field data examples demonstrate that our method successfully identifies the first arrivals. The predicted first-arrival result obtained by using our method is superior to the result obtained by using the traditional method of short-term average and long-term average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助淡然柚子采纳,获得10
1秒前
ttldhbds完成签到,获得积分10
2秒前
思源应助kkk采纳,获得10
2秒前
小羊发布了新的文献求助10
3秒前
胡涂图发布了新的文献求助10
4秒前
科研通AI6应助鲨鱼辣椒793采纳,获得10
5秒前
DRYAD完成签到,获得积分10
6秒前
所所应助笨笨蜜蜂采纳,获得10
6秒前
yousheng完成签到,获得积分10
7秒前
思源应助小羊采纳,获得10
8秒前
Motorhead完成签到,获得积分10
10秒前
10秒前
JamesPei应助zhuwei采纳,获得10
11秒前
11秒前
kkk完成签到,获得积分20
12秒前
王多肉发布了新的文献求助200
13秒前
16秒前
16秒前
18秒前
18秒前
20秒前
留胡子的不弱完成签到 ,获得积分10
20秒前
鲤鱼大神发布了新的文献求助10
21秒前
彬9完成签到,获得积分20
21秒前
bkagyin应助Forest采纳,获得10
21秒前
zhuwei发布了新的文献求助10
22秒前
烟花应助喜悦莛采纳,获得10
22秒前
马佳音完成签到 ,获得积分10
23秒前
思源应助Neo采纳,获得10
23秒前
23秒前
碧蓝邪欢完成签到,获得积分10
23秒前
甜甜电源完成签到,获得积分10
24秒前
24秒前
Sandwich完成签到,获得积分10
26秒前
27秒前
aaaaaawwwww完成签到,获得积分10
28秒前
28秒前
IMP完成签到 ,获得积分10
28秒前
sunny心晴完成签到 ,获得积分10
29秒前
刘浩然发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397132
求助须知:如何正确求助?哪些是违规求助? 4517388
关于积分的说明 14063639
捐赠科研通 4429280
什么是DOI,文献DOI怎么找? 2432263
邀请新用户注册赠送积分活动 1424811
关于科研通互助平台的介绍 1403862