Information Retrieval in Food Science Research: A Bibliographic Database Analysis

数据库 计算机科学 选择(遗传算法) 情报检索 书目数据库 数据科学 人工智能
作者
Tuba Karaarslan Urhan,Hannah Rempel,Lisbeth Meunier‐Goddik,Michael H. Penner
出处
期刊:Journal of Food Science [Wiley]
卷期号:83 (12): 2912-2922 被引量:6
标识
DOI:10.1111/1750-3841.14388
摘要

The aim of the present research was to ascertain the importance of electronic bibliographic database selection and multiple database usage during the information retrieval phase of research in the food sciences. Six commonly recommended databases were compared with respect to overall journal coverage and journal overlap. Databases were also evaluated with respect to coverage of food science-based journals and the extent of article coverage therein. A case study approach, focused on bile acid/dietary fiber interactions, was used to illustrate the ramifications of database selection/usage when dealing with specific research topics. Databases differed with respect to the breadth of disciplines covered, the total number of journals indexed, the number of food science discipline-specific journals indexed, and the number of articles included per indexed journal. All of the databases contained citations that were unique to the given database. The data resulting from the case study provide an example of the extent to which relevant information may be missed if pertinent databases are not mined. In the present case, over half of the articles retrieved on the focus research topic were unique to a single database. The combined data from this study point to the importance of thoughtful database selection and multiple database usage when comprehensively assessing knowledge in the food sciences. PRACTICAL APPLICATION: This paper provides insights into article database usage for food science-relevant information retrieval. Online information retrieval is an efficient way to assess current knowledge in any of the food science disciplines. Acquired knowledge in turn is the underpinning of effective problem solving; whether it be private sector- or academic/government-based research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助一只小羔羊采纳,获得10
刚刚
1秒前
1秒前
2秒前
cookie发布了新的文献求助10
2秒前
hahahalha完成签到,获得积分10
2秒前
2秒前
爆米花应助gj采纳,获得10
3秒前
SciGPT应助飘逸的翼采纳,获得10
3秒前
3秒前
科研通AI5应助博修采纳,获得10
4秒前
科研通AI5应助朝朝采纳,获得10
4秒前
wan完成签到,获得积分10
4秒前
赘婿应助Cecilia采纳,获得10
5秒前
Cyan完成签到,获得积分10
5秒前
5秒前
5秒前
张靖超发布了新的文献求助10
7秒前
ljn0406完成签到 ,获得积分10
8秒前
wang发布了新的文献求助10
8秒前
蝶步韶华发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Priscilla发布了新的文献求助10
11秒前
12秒前
惠_____完成签到 ,获得积分10
13秒前
毛毛完成签到 ,获得积分10
13秒前
乐观小之发布了新的文献求助10
14秒前
16秒前
赵博宇发布了新的文献求助10
17秒前
哈哈完成签到,获得积分10
19秒前
快乐爱斯米完成签到,获得积分10
19秒前
19秒前
眯眯眼的咖啡完成签到 ,获得积分10
20秒前
羞涩的zeze发布了新的文献求助10
22秒前
22秒前
CipherSage应助pxc采纳,获得10
23秒前
23秒前
小马甲应助VIAI采纳,获得10
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826719
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453805
捐赠科研通 3088598
什么是DOI,文献DOI怎么找? 1699232
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770157