In Silico and in Vitro Assessment of OATP1B1 Inhibition in Drug Discovery

生物信息学 药物发现 体外 药理学 药品 计算生物学 化学 生物 生物化学 基因
作者
Matthew L. Danielson,Geri A. Sawada,Thomas J. Raub,Prashant Desai
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:15 (8): 3060-3068 被引量:14
标识
DOI:10.1021/acs.molpharmaceut.8b00168
摘要

The organic anion-transporting polypeptide 1B1 transporter belongs to the solute carrier superfamily and is highly expressed at the basolateral membrane of hepatocytes. Several clinical studies show drug–drug interactions involving OATP1B1, thereby prompting the International Transporter Consortium to label OATP1B1 as a critical transporter that can influence a compound's disposition. To examine OATP1B1 inhibition early in the drug discovery process, we established a medium-throughput concentration-dependent OATP1B1 assay. To create an in silico OATP1B1 inhibition model, deliberate in vitro assay enrichment was performed with publically known OATP1B1 inhibitors, noninhibitors, and compounds from our own internal chemistry. To date, approximately 1200 compounds have been tested in the assay with 60:40 distribution between noninhibitors and inhibitors. Bagging, random forest, and support vector machine fingerprint (SVM-FP) quantitative structure–activity relationship classification models were created, and each method showed positive and negative predictive values >90%, sensitivity >80%, specificity >95%, and Matthews correlation coefficient >0.8 on a prospective test set indicating the ability to distinguish inhibitors from noninhibitors. A SVMF-FP regression model was also created that showed an R2 of 0.39, Spearman's rho equal to 0.76, and was capable of predicting 69% of the prospective test set within the experimental variability of the assay (3-fold). In addition to the in silico quantitative structure–activity relationship (QSAR) models, physicochemical trends were examined to provide structure activity relationship guidance to early discovery teams. A JMP partition tree analysis showed that among the compounds with calculated logP >3.5 and ≥1 negatively charged atom, 94% were identified as OATP1B1 inhibitors. The combination of the physicochemical trends along with an in silico QSAR model provides discovery project teams a valuable tool to identify and address drug–drug interaction liability due to OATP1B1 inhibition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汎影发布了新的文献求助10
刚刚
fighting完成签到,获得积分10
1秒前
大力完成签到,获得积分10
1秒前
1秒前
2秒前
追光发布了新的文献求助10
2秒前
qiuyue完成签到,获得积分10
2秒前
orixero应助Lllll采纳,获得10
2秒前
Vaying发布了新的文献求助20
3秒前
凌桦惜余发布了新的文献求助10
3秒前
宫野珏发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助无敌医学生采纳,获得10
3秒前
小蘑菇应助无敌医学生采纳,获得10
3秒前
1sss发布了新的文献求助10
3秒前
风吹而过关注了科研通微信公众号
3秒前
4秒前
4秒前
探索期完成签到,获得积分10
5秒前
5秒前
5秒前
chengwenyu发布了新的文献求助10
5秒前
爱睡午觉完成签到,获得积分10
6秒前
6秒前
6秒前
zyzhnu完成签到,获得积分10
6秒前
香蕉觅云应助宫野珏采纳,获得10
6秒前
7秒前
haoyunlai完成签到,获得积分10
7秒前
ZD完成签到 ,获得积分10
7秒前
科研通AI2S应助FloppyWow采纳,获得10
8秒前
Grayball完成签到,获得积分0
8秒前
MX应助研友_851KE8采纳,获得20
8秒前
windbroken发布了新的文献求助10
9秒前
科研通AI5应助12138采纳,获得10
9秒前
9秒前
Akim应助songf11采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765