High-Pressure PEM Water Electrolysis: in-Situ Measurement of Hydrogen Crossover

聚合物电解质膜电解 高压电解 电解 电解水 阳极 阴极 制氢 电解质 质子交换膜燃料电池 材料科学 渡线 化学 化学工程 核工程 电极 计算机科学 工程类 物理化学 人工智能 有机化学 生物化学
作者
Boris Bensmann,Richard Hanke‐Rauschenbach,Kai Sundmacher
出处
期刊:Meeting abstracts 卷期号:MA2014-01 (12): 573-573
标识
DOI:10.1149/ma2014-01/12/573
摘要

To ensure safe and efficient operation of polymer electrolyte membrane (PEM) water electrolyzers the determination of hydrogen crossover through the membrane-electrode-assemblies (MEA) is an important issue. Hydrogen crossover leads to a contamination of the oxygen product stream with the risk of the formation of explosive atmospheres within the anode channels. Additionally, the crossover flux represents a loss of product hydrogen, leading to an increase of the specific energy demand for the electrolysis. Especially under asymmetric (also named unbalanced or differential) pressure conditions (e.g. discussed by [1]), these losses can easily exceed the benefits connected with the electrochemical co-compression of the produced hydrogen [2]. The present contribution proposes an experimental method for the in-situ determination of hydrogen crossover in polymer electrolyte membrane water electrolysis cells [3]. The measurement concept is based on the electrochemical compensation of the hydrogen crossover flux, which translates the mass flux determination into an electric current measurement. The proposed method is based on a very simple set-up and measurement procedure, as well as high accuracy. It allows for measurement with a fully assembled electrolysis cell at standard water electrolysis conditions by use of standard equipment, also installed in industrial electrolyzer plants. The technique is especially suitable for high-pressure PEM electrolyzers operated under asymmetric pressure conditions. In Fig. 1(a) schematic of the employed set-up is shown. The anode side of the electrolyzer under investigation is operated throughout the whole experiment under the same conditions as during normal operation. The cathode side is equipped with a pressure transmitter and is disconnected from the rest of the plant, e.g. by means of a cutoff valve. The measurement principle is as follows: a small current is applied to the set-up described above. On the anode side, water is consumed and oxygen evolves. In the sealed cathode compartment hydrogen is evolved, which leads to a pressure increase over time. The cathode pressure reaches a steady-state value when the hydrogen loss, which is driven by the increasing pressure difference, levels out the hydrogen evolution (Eq. 1). d p cathode / d t = 0 <-> 0 = -G H2,crossover + i/2/F (1) Fig. 1(b),(c) illustrates one application of the described basic measurement principle. If the experiment is carried out repeatedly at different currents, it allows for a quick and simple characterization of MEA materials under electrolysis, since a relation between the cathode pressure and the hydrogen crossover flux can be obtained. The applicability of the suggested method for a broad pressure range is briefly illustrated with a laboratory scale electrolyzer plant and by comparison of the measured data with available literature values (Fig. 2) by use of the membrane permeability coefficient K p,H2 (Eq. 2): G H2,crossover = K p,H2 Δp H2 /t m (2) [1.] F. Marangio, M. Santarelli, M. Cali, International Journal of Hydrogen Energy 34 (2009) 1143–1158. [2.] B. Bensmann, R. Hanke-Rauschenbach, I. K. Pena Arias, K. Sundmacher, Electrochimica Acta 110 (2013), pp. 570-580 [3.] B. Bensmann, R. Hanke-Rauschenbach, K. Sundmacher, International Journal of Hydrogen Energy, In press. DOI 10.1016/j.ijhydene.2013.10.085

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lover发布了新的文献求助10
刚刚
顾矜应助GAOYUwenzhang采纳,获得10
刚刚
Mili发布了新的文献求助10
刚刚
1秒前
泡芙完成签到 ,获得积分10
1秒前
1秒前
lv完成签到,获得积分10
2秒前
脑洞疼应助疆之北采纳,获得10
2秒前
SciGPT应助熊猫王666采纳,获得10
2秒前
ShawnFusion发布了新的文献求助10
2秒前
2秒前
2秒前
落寞白曼发布了新的文献求助10
2秒前
天天快乐应助HJJHJH采纳,获得10
3秒前
吴彦祖应助zzzz采纳,获得10
3秒前
情怀应助张军采纳,获得10
3秒前
笨笨幻灵完成签到,获得积分10
3秒前
陈琪发布了新的文献求助10
4秒前
香蕉觅云应助jiayouYi采纳,获得10
4秒前
trust完成签到,获得积分10
4秒前
H2SO4发布了新的文献求助10
5秒前
5秒前
小SU哥完成签到,获得积分20
5秒前
向钱看发布了新的文献求助10
5秒前
5秒前
流云发布了新的文献求助10
5秒前
Ava应助stay采纳,获得20
6秒前
聪慧橘子完成签到,获得积分10
6秒前
7秒前
小猴子应助拼搏老鼠采纳,获得10
7秒前
7秒前
完美世界应助阿媛呐采纳,获得10
8秒前
8秒前
细腻的荟完成签到,获得积分10
9秒前
流萤完成签到,获得积分10
9秒前
华仔应助普外科老白采纳,获得10
9秒前
来活完成签到,获得积分10
10秒前
香樟沐雪发布了新的文献求助10
10秒前
10秒前
善学以致用应助wyb采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489418
求助须知:如何正确求助?哪些是违规求助? 4588211
关于积分的说明 14417923
捐赠科研通 4519860
什么是DOI,文献DOI怎么找? 2476462
邀请新用户注册赠送积分活动 1461954
关于科研通互助平台的介绍 1435021