亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microfiltration membranes via electrospinning of polyethersulfone solutions

静电纺丝 纳米纤维 微滤 材料科学 过滤(数学) 纳滤 化学工程 超滤(肾) 结垢 聚合物 多孔性 体积流量 透气比表面积 复合材料 色谱法 高分子化学 化学 图层(电子) 工程类 物理 统计 量子力学 生物化学 数学
作者
Bintasan Kwankhao
摘要

Nanofibers or nanowebs produced by electrospinning have several prominent properties such as high surface area to volume ratio, high porosity and pore size in nanorange. As the porosity of electrospun nanoweb is more than 90%, they are candidates for air filters and liquid filtration membranes. However, the application of electrospun nanofibers membranes has yet to make breakthrough in other avenues of separation than air filtration, especially in pressure-driven liquid separations, such as ultrafiltration (UF) or nanofiltration (NF). In this project, the preparation of polyethersulfone (PES) membranes by electrospinning was studied. The influence of processing parameters, i.e., polymer concentration, applied voltage, flow rate, spinneret-to-collector distance, relative humidity, were investigated. The treatment of the proto-membrane formed by immersion in an aqueous coagulation bath was also studied. More comprehensive characterizations of the nanofiber membranes, including fiber diameter, pore size, porosity, thickness, basic weight and tensile strength as well as air and water permeability were investigated. Thereby, we expect that this work will open up the avenue toward the use of nanofibers for very important applications of separation technology. Of particular interest are membranes in water purification, e.g., pre-filters to minimize contaminations and fouling prior to ultra- or nano-filtration. PES (Ultrason 6020P) was dissolved in N-methyl-2-pyrrolidone (NMP) at concentrations of 9%, 15%, 22%. The polymer solution was electrospun under processing conditions i.e., a spinneret-to-collector distance of 10 cm, an applied voltage of 30 kV, a flow rate of 20 μL/min, and a spinneret diameter of 0.8 mm, stationary substrate set-up, aluminum foil and PET nonwoven served as the substrate. The first results showed that the 22% PES solution can be electrospun into well-defined nanofiber. The overall morphology of the membranes obtained is changed from a fiber network into spherical particles connected by fibers with the decrease of the polymer concentration in the solution used for electrospinning. The properties of nanofiber can be measured on aluminum foil or PET nonwoven as substrate. Image analyses gave a mean fiber diameter of 489 ± 142 nm but under stationary spinning conditions that leads to a 3 dimensional fiber web on the substrate. When the 22% PES solution was electrospun membrane using a moving substrate under processing conditions i.e., applied voltage of 18 kV, a spinneret-to-collector distance of 10 cm, a flow rate of 20 μL/min, a spinneret diameter of 0.8 mm, a speed of substrates moving of 2.2 cm/min, 65% RH and served the PET nonwoven as substrate, yielded a more planar and homogeneous membrane. The thickness of membrane was 200 μm. The image analyses gave a mean fiber diameter of 800 nm. However, the proto-membrane which had been treated by immersion into the water bath lead to a pronounced porosity on the nanofiber surface which will be useful, for instance, for increasing binding capacity to the fiber surface. In addition, the membranes which had been electrospun under processing condition at high humidity resulted in irregular fiber formation. All test results for membranes showed that the fiber diameter and membrane structure and, consequently, membranes properties were clearly affected by applied voltage and spinneret-to-collector distance. The electrospun membrane was prepared by an applied voltage 18 kV at distance spinneret-to-collector of 10 cm, a flow rate of 20 μL/min, a spinneret diameter of 0.8 mm, a speed of substrates moving of 2.2 cm/min, 65% RH and served the PET nonwoven as substrate exhibited the pore size of 1.8 μm, the porosity of 93% and basic weight of 0.169 mg/cm2. All membranes showed similar and high contact angle. The electrospun membranes prepared by applying higher voltage have lower flux than membranes prepared with lower voltage. The electrospun membranes which were prepared by increasing distance between spinneret-to-collector (kept other conditions) exhibited high water flux and clear correlation between structure and performance that decreasing of mean pore size leads to decreasing water flux of electrospun membranes. However the results suggested that PES electrospun nanofiber membranes are excellent materials for high water flux MF applications. Regarding nitrogen gas flow through electrospun membranes, the membranes which were prepared by increasing applied voltage showed decreasing gas permeability. Moreover with the DEHS aerosol, with particles size of 400 - 1000 nm, filtration performance of electrospun nanofiber web was much greater than that of the 4 layers commercial nonwoven (Novatexx 2429) with pore size of 8 μm. This result clearly demonstrated the potential of electrospun nanofiber in the development of filter material against aerosol nanoparticles. The filtrate fluxes of commercial membrane (Membrana MicroPES; pore size 1 μm) was much smaller than the filtrate fluxes of PES electrospun membrane with pore size ranging between 1.7 - 4.5 μm. Overall, PES electrospun membrane showed greater water flux than commercial membrane both before and after separation of silica nanoparticles (size 35 nm). The water flux before separation of all membrane was higher than after silica nanoparticles separation. The PES electrospun membranes had higher particles rejection than PES commercial membrane. Besides, the rejection of electrospun membranes was well above 90%, while commercial membrane rejected the nanoparticles by only 85% in the beginning of the filtration. Moreover, the PES electrospun membranes exhibited the rejection above 98% at the end of rejection experiment run. Such the results showed, electrospun nanofiber PES membranes can be used in various applications such as removal of nano or microparticles from waste-water, e.g., pre-filters to minimize contaminations and fouling prior to UF or NF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助留胡子的凤灵采纳,获得10
6秒前
11秒前
17秒前
俭朴夜雪完成签到,获得积分10
27秒前
41秒前
小马甲应助xxx采纳,获得10
48秒前
西红柿有饭吃吗完成签到,获得积分10
49秒前
过氧化氢应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
52秒前
Ava应助科研通管家采纳,获得10
52秒前
牛八先生完成签到,获得积分10
55秒前
远山笑你完成签到 ,获得积分10
58秒前
1分钟前
xxx发布了新的文献求助10
1分钟前
xxx完成签到,获得积分20
1分钟前
1分钟前
友好胜完成签到 ,获得积分10
1分钟前
JamesPei应助红茶猫采纳,获得10
2分钟前
2分钟前
2分钟前
红茶猫发布了新的文献求助10
2分钟前
2分钟前
结实芝麻完成签到 ,获得积分10
3分钟前
3分钟前
852应助怕孤独的如松采纳,获得10
3分钟前
qqq完成签到,获得积分10
3分钟前
畅快的寻凝应助小汤采纳,获得10
3分钟前
西吴完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Raunio完成签到,获得积分10
4分钟前
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
过氧化氢应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042970
求助须知:如何正确求助?哪些是违规求助? 3580766
关于积分的说明 11383616
捐赠科研通 3308539
什么是DOI,文献DOI怎么找? 1820755
邀请新用户注册赠送积分活动 893493
科研通“疑难数据库(出版商)”最低求助积分说明 815659