Evidence for non‐random sampling in randomised, controlled trials by Yuhji Saitoh

医学 统计 采样(信号处理) 随机效应模型 范畴变量 数学 内科学 计算机科学 荟萃分析 计算机视觉 滤波器(信号处理)
作者
J. B. Carlisle,John A Loadsman
出处
期刊:Anaesthesia [Wiley]
卷期号:72 (1): 17-27 被引量:62
标识
DOI:10.1111/anae.13650
摘要

Summary A large number of randomised trials authored by Yoshitaka Fujii have been retracted, in part as a consequence of a previous analysis finding a very low probability of random sampling. Dr Yuhji Saitoh co‐authored 34 of those trials and he was corresponding author for eight of them. We found a number of additional randomised, controlled trials that included baseline data, with Saitoh as corresponding author, that Fujii did not co‐author. We used Monte Carlo simulations to analyse the baseline data from 32 relevant trials in total as well as an outcome (muscle twitch recovery ratios) reported in several. We also compared a series of muscle twitch recovery graphs appearing in a number of Saitoh's publications. The baseline data in 14/32 randomised, controlled trials had p < 0.01, of which seven p values were < 0.001. Eight trials reported four ratios of the time for the return of muscle activity after neuromuscular blockade, the distributions of which were homogeneous: the p values for the observed Q statistics were 0.0055, 0.031, 0.016 and 0.0071. Comparison of graphs revealed multiple coincident or near‐coincident curves across a large number of publications, a finding also inconsistent with random sampling. Combining the continuous and categorical probabilities of the 32 included trials, we found a very low likelihood of random sampling: p = 1.27 × 10 −8 (1 in 100,000,000). The high probability of non‐random sampling and the repetition of lines in multiple graphs suggest that further scrutiny of Saitoh's work is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走的鱼完成签到,获得积分10
1秒前
Tardigrade完成签到,获得积分10
2秒前
慕青应助路瑶瑶采纳,获得10
2秒前
2秒前
NN应助我的miemie采纳,获得40
3秒前
3秒前
雪魔完成签到,获得积分10
6秒前
汉堡包应助Zhao_716采纳,获得10
6秒前
英姑应助古德方采纳,获得10
8秒前
8秒前
8秒前
9秒前
小马甲应助小星果茶采纳,获得10
9秒前
9秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
星辰大海应助up325采纳,获得10
14秒前
孤蚀月完成签到,获得积分10
14秒前
14秒前
14秒前
超级的鞅发布了新的文献求助10
15秒前
15秒前
Oscillator发布了新的文献求助10
15秒前
长长的衣服完成签到,获得积分10
15秒前
16秒前
67n发布了新的文献求助10
17秒前
小青椒应助若冰采纳,获得40
17秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6.1应助淡然画板采纳,获得10
18秒前
我是老大应助One采纳,获得10
19秒前
chshj发布了新的文献求助10
19秒前
KH发布了新的文献求助10
20秒前
科研通AI6.1应助lll采纳,获得10
20秒前
20秒前
Judy完成签到,获得积分10
20秒前
脑洞疼应助超级的鞅采纳,获得10
20秒前
嘻嘻哈哈完成签到 ,获得积分10
20秒前
彩色面包发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774852
求助须知:如何正确求助?哪些是违规求助? 5620046
关于积分的说明 15436926
捐赠科研通 4907323
什么是DOI,文献DOI怎么找? 2640592
邀请新用户注册赠送积分活动 1588479
关于科研通互助平台的介绍 1543394