混合模型
计算机科学
概率逻辑
点云
忠诚
统计模型
高保真
人工智能
高斯分布
点(几何)
云计算
数据挖掘
机器学习
算法
数学
电信
电气工程
工程类
几何学
量子力学
操作系统
物理
作者
Kshitij Goel,Nathan Michael,Wennie Tabib
出处
期刊:IEEE robotics and automation letters
日期:2023-03-14
卷期号:8 (5): 2526-2533
被引量:23
标识
DOI:10.1109/lra.2023.3256923
摘要
This letter presents a continuous probabilistic modeling methodology for spatial point cloud data using finite Gaussian Mixture Models (GMMs) where the number of components are adapted based on the scene complexity. Few hierarchical and adaptive methods have been proposed to address the challenge of balancing model fidelity with size. Instead, state-of-the-art mapping approaches require tuning parameters for specific use cases, but do not generalize across diverse environments. To address this gap, we utilize a self-organizing principle from information-theoretic learning to automatically adapt the complexity of the GMM model based on the relevant information in the sensor data. The approach is evaluated against existing point cloud modeling techniques on real-world data with varying degrees of scene complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI