物理
组合数学
西格玛
奇点
无穷
数学物理
数学分析
数学
量子力学
标识
DOI:10.3934/dcdss.2023035
摘要
Our purpose of this paper is to study isolated singular solutions of semilinear Helmholtz equation \begin{document}$ -\Delta u-u = Q|u|^{p-1}u \quad{\rm in}\ \ \mathbb{R}^N\setminus\{0\},\ \qquad\lim\limits_{|x|\to0}u(x) = +\infty, $\end{document} where \begin{document}$ N\geq 2 $\end{document}, \begin{document}$ p>1 $\end{document} and the potential \begin{document}$ Q: \mathbb{R}^N\to (0,+\infty) $\end{document} is a Hölder continuous function satisfying extra decaying conditions at infinity. We give the classification of the isolated singularity in the Serrin's subcritical case and then isolated singular solutions are derived with the form \begin{document}$ u_k = k\Phi+v_k $\end{document} via the Schauder fixed point theorem for the integral equation$ v_k = \Phi\ast\big(Q|kw_\sigma+v_k|^{p-1}(kw_\sigma+v_k)\big)\quad{\rm in}\ \, \mathbb{R}^N, $where \begin{document}$ \Phi $\end{document} is the real valued fundamental solution \begin{document}$ -\Delta-1 $\end{document} and \begin{document}$ w_\sigma $\end{document} is also a real valued solution of \begin{document}$ (-\Delta-1)w_\sigma = \delta_0 $\end{document} with the asymptotic behavior at infinity controlled by \begin{document}$ |x|^{-\sigma} $\end{document} for some \begin{document}$ \sigma\leq \frac{N-1}{2} $\end{document}.
科研通智能强力驱动
Strongly Powered by AbleSci AI