清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification

计算机科学 模式识别(心理学) 人工智能 Softmax函数 图形 预处理器 高光谱成像 注意力网络 像素 人工神经网络 理论计算机科学
作者
Yao Ding,Zhili Zhang,Xiaofeng Zhao,Danfeng Hong,Wei Cai,Nengjun Yang,Bei Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119858-119858 被引量:81
标识
DOI:10.1016/j.eswa.2023.119858
摘要

Hyperspectral image (HSI) classification has attracted wide attention in many fields. Applying Graph Neural Network (GNN) to HSI classification is one of the research frontiers, which has improved the HSI classification accuracy greatly. However, GNN-based methods have not been widely applied due to their time-consuming, inefficient information description as well as poor anti-noise robustness. To overcome the deficiencies, a novel multi-scale receptive fields graph attention neural network (MRGAT) is proposed for HSI classification in this paper. In this network, a superpixel segment method is adopted to abstract the original HSI local spatial features. A two-layer one-dimensional convolution neural network (1D CNN) spectral transformer mechanism, is designed to extract the spectral features of superpixels, with which the spectral features can be acquired automatically. Furthermore, graph edges are introduced into Graph Attention Network (GAT) to acquire the local semantic feature of the graph. Moreover, inspired by the transformer network, we design a novel multi-scale receptive field GAT to extract the local-global adjacent node-features and edges-features. Finally, a graph attention network and a softMax function are utilized for multi-receptive feature fusion and pixel-label predicting. On Pavia University, Salinas, and Houston 2013 datasets, the overall accuracies (OAs) of our MRGAT are 71.76%, 82.61%, and 63.82%, respectively. Moreover, the performances with limited labeled samples indicates that the MRGAT contains superior adaptability. Compared with the competitive classifiers, MRGAT achieves high classification efficiency verified by training time comparison experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M先生完成签到,获得积分10
1秒前
美丽的楼房完成签到 ,获得积分10
2秒前
沉静香氛完成签到 ,获得积分10
8秒前
cdercder应助科研通管家采纳,获得10
11秒前
cdercder应助科研通管家采纳,获得10
11秒前
丝丢皮得完成签到 ,获得积分10
13秒前
科研通AI5应助Dr_an采纳,获得10
16秒前
幽默的忆霜完成签到 ,获得积分10
20秒前
稳重母鸡完成签到 ,获得积分10
25秒前
ZhaoY完成签到,获得积分10
54秒前
56秒前
Jiangzy发布了新的文献求助10
59秒前
Ye发布了新的文献求助10
1分钟前
王雨薇完成签到,获得积分10
1分钟前
聪明凌柏完成签到 ,获得积分10
1分钟前
十二完成签到 ,获得积分10
1分钟前
cdercder应助Ye采纳,获得10
1分钟前
慕青应助调皮帆布鞋采纳,获得10
1分钟前
lalala完成签到 ,获得积分10
1分钟前
故意的书本完成签到 ,获得积分10
1分钟前
晴空万里完成签到 ,获得积分10
1分钟前
梦梦的小可爱完成签到 ,获得积分10
1分钟前
1分钟前
herpes完成签到 ,获得积分0
2分钟前
Meng完成签到,获得积分10
2分钟前
MADAO完成签到 ,获得积分10
2分钟前
SCI完成签到 ,获得积分10
2分钟前
拼搏的羊青完成签到,获得积分10
2分钟前
zyp应助科研通管家采纳,获得10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
顾矜应助persist采纳,获得10
2分钟前
一直会飞的猪完成签到 ,获得积分10
2分钟前
敞敞亮亮完成签到 ,获得积分10
2分钟前
2分钟前
Jiangzy完成签到,获得积分10
2分钟前
persist发布了新的文献求助10
2分钟前
巴山夜雨完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385538
关于积分的说明 10540750
捐赠科研通 3106152
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308