Optimizing model parameters of artificial neural networks to predict vehicle emissions

人工神经网络 氮氧化物 汽车工程 环境科学 柴油 体积流量 近似误差 相关系数 扭矩 废气 质量流量 质量流 计算机科学 工程类 化学 废物管理 机械 统计 数学 燃烧 机器学习 物理 热力学 有机化学
作者
Jigu Seo,Sungwook Park
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:294: 119508-119508 被引量:10
标识
DOI:10.1016/j.atmosenv.2022.119508
摘要

This paper presents a novel approach to predict carbon dioxide (CO2), nitrogen oxides (NOx), and carbon monoxide (CO) emissions of diesel vehicles using artificial neural network (ANN), which offer high degrees of accuracy and practicality. Six operating parameters (velocity, engine speed, engine torque, engine coolant temperature, fuel/air ratio, and intake air mass flow) collected through on-board diagnostic interface were used as predictors of exhaust emissions. The importance of each parameter to the emission predictions were comprehensively analyzed by comparing the coefficient of determination, root mean square error, cumulative emissions, and instantaneous emission rates. The emission prediction accuracy of ANN tends to increase as more parameters were considered as model inputs at the same time. However, the level of accuracy improvement depends on the input parameters. For CO2 emissions, engine torque and fuel/air ratio were good predictors for achieving high prediction accuracy. The relative importance of intake air mass flow rate and fuel/air ratio was high for NOx and CO predictions, respectively. In addition, the emission prediction accuracy of ANN depends on the vehicle type (Euro 5, Euro 6b, Euro 6d-temp). The emission prediction accuracy of vehicles equipped with after-treatment devices (selective catalytic reduction and lean NOx trap) was lower than that of vehicles without after-treatment devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助无法停下脚步采纳,获得10
刚刚
思源应助王秋婷采纳,获得10
1秒前
1秒前
1秒前
2秒前
GQ完成签到,获得积分20
2秒前
灵波发布了新的文献求助10
5秒前
YANGYANGYANG完成签到,获得积分10
5秒前
雾霭迷茫发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
6秒前
科研通AI5应助小周采纳,获得10
8秒前
8秒前
9秒前
hbhbj完成签到,获得积分10
14秒前
1111111111111完成签到,获得积分10
14秒前
fang完成签到 ,获得积分10
15秒前
丘比特应助灵波采纳,获得10
15秒前
田様应助xxx采纳,获得30
16秒前
白白圣诞发布了新的文献求助10
16秒前
17秒前
彭于晏应助热心的汽车采纳,获得10
19秒前
与梦随行2011完成签到,获得积分10
19秒前
科研通AI5应助开朗的之瑶采纳,获得10
19秒前
王秋婷发布了新的文献求助10
20秒前
FashionBoy应助哈哈采纳,获得10
22秒前
22秒前
22秒前
22秒前
帅小主发布了新的文献求助10
27秒前
Carera完成签到,获得积分10
28秒前
purple完成签到 ,获得积分10
28秒前
慕青应助lzpdsb采纳,获得10
29秒前
wuyanchi发布了新的文献求助10
29秒前
31秒前
32秒前
青蛙公主完成签到 ,获得积分10
33秒前
万能图书馆应助oh采纳,获得10
34秒前
小蘑菇应助清梦采纳,获得10
36秒前
36秒前
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417