Defect-induced electronic modification and surface reconstruction of catalysts during water oxidation process

表征(材料科学) 催化作用 析氧 原位 材料科学 纳米技术 分解水 化学工程 电化学 化学 电极 有机化学 物理化学 工程类 光催化
作者
Gracita M. Tomboc,Sandhya Venkateshalu,Quang-Tung Ngo,Songa Choi,Bruno G. Pollet,Hangil Lee,Kwangyeol Lee
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140254-140254 被引量:17
标识
DOI:10.1016/j.cej.2022.140254
摘要

Over the past decade, defect-promoted electrochemical activity and stability have become essential concepts to a rational catalyst design. The interest in defect engineering has been increasing drastically in recent years. Defect-induced electronic modifications and surface reconstruction during water oxidation have been at the focal point of attention because they have been suggested to promote the formation of real active species and/or sites responsible for driving the anodic oxygen evolution reaction (OER). Owing to the rapid development of characterization techniques, the in-depth analysis of the dynamic reconstruction of OER catalysts under operating conditions has become possible. The intrinsic changes in catalyst surface structure, composition, and electronic configuration, which ultimately affect the reaction mechanism, are presently probed using modern in-situ and operando microscopy and spectroscopy techniques. Herein, we present a detailed overview of the different ex-situ, in-situ, and operando characterization techniques generally used to provide crucial insights into the structural, morphological, compositional, chemical, and physical properties of catalysts throughout the water oxidation process. We then elaborate on the indispensable effects of defects on the OER catalytic activity and stability by presenting up-to-date survey literature focused on the characterization of defect-rich catalysts. Finally, we draw attention to the urgent challenges of modern characterization techniques and future research directions to produce defect-enriched, stable OER catalysts that would fast-forward the advance to the future hydrogen economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傢誠发布了新的文献求助10
1秒前
TT完成签到,获得积分10
2秒前
12366666发布了新的文献求助10
2秒前
3秒前
3秒前
研友_8op5gL发布了新的文献求助10
4秒前
5秒前
Jasper应助Nidehuogef采纳,获得10
5秒前
sweetieLUER完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
研友_7LMgzZ完成签到 ,获得积分10
6秒前
赘婿应助眯眯眼的青烟采纳,获得10
7秒前
糖糖完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
10秒前
跳跃寻绿完成签到 ,获得积分10
10秒前
10秒前
10秒前
1111发布了新的文献求助10
10秒前
feve发布了新的文献求助10
11秒前
乔巴发布了新的文献求助10
11秒前
零凌给内向的橘子的求助进行了留言
12秒前
Jianai发布了新的文献求助10
12秒前
angki77发布了新的文献求助10
12秒前
雪白雍发布了新的文献求助10
12秒前
小欣鱼发布了新的文献求助10
13秒前
无花果应助chenwenjun4584采纳,获得20
14秒前
14秒前
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
JamesPei应助小薛采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409383
求助须知:如何正确求助?哪些是违规求助? 2105265
关于积分的说明 5316971
捐赠科研通 1832737
什么是DOI,文献DOI怎么找? 913229
版权声明 560754
科研通“疑难数据库(出版商)”最低求助积分说明 488289