Structural succession of land resources under the influence of different policies: A case study for Shanxi Province, China

土地利用 可持续发展 中国 分布(数学) 环境资源管理 土地利用、土地利用的变化和林业 政府(语言学) 土地开发 气候变化 可计算一般均衡 草原 地理 自然资源经济学 业务 生态学 环境科学 经济 数学分析 语言学 哲学 数学 考古 宏观经济学 生物
作者
Ziyue Yu,Xiangzheng Deng,Ali Cheshmehzangi,Eugenio Mangi
出处
期刊:Land Use Policy [Elsevier BV]
卷期号:132: 106810-106810 被引量:8
标识
DOI:10.1016/j.landusepol.2023.106810
摘要

The increased focus on land resources is a result of global climate change. For human life and progress, land resources provide a key foundation. Using land resources under sensible regulations can enable sustainable development in order to better adapt to climate change. In this study, we used the Malmquist index to compute the outcomes and spatial distribution of land use efficiency in Shanxi Province during 2006–2019. According to the findings, ecologically vulnerable areas have less efficient land use than areas with rapid economic growth. Therefore, to more effectively resolve the tensions between economic development and ecological conservation and to provide scientific guidance to decision makers, we need to model future land use in Shanxi Province driven by socio-economic systems. To predict future land use demand and its spatial distribution under the influence of socio-economic and government policies, this study combines the Computable General Equilibrium of Land Use Change (CGELUC) model and Dynamics of Land System (DLS) model. Under the green development scenario, the reduction rates of forest land and grassland are 2.09 % and 1.65 %, respectively, which is the slowest reduction of ecological land among the three scenarios. Development of ecological land such as forests and grasslands are severely prohibited by government regulations. The lowest carbon sequestration reduction rate of 1.62 % is registered in Shanxi Province under the green development scenario. Construction land increases more quickly under the economic priority development scenario, with a growth rate of 33.02 %. Ecological land, including grasslands and forests, is declining. Under the scenario of economic development priority, the ecological land in Shanxi Province will inevitably be sacrificed. Therefore, the government should strive to actively overcome barriers to the development of land resources for ecological protection as this is a key region for that purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情孤菱完成签到,获得积分10
刚刚
1秒前
临渊完成签到 ,获得积分10
1秒前
科研通AI5应助坚定的诗双采纳,获得10
4秒前
高傲的小飞龙完成签到,获得积分10
4秒前
5秒前
传奇3应助yliu采纳,获得10
5秒前
可以听见吗完成签到,获得积分10
7秒前
7秒前
7秒前
豆豆发布了新的文献求助10
8秒前
10秒前
梧桐雨210发布了新的文献求助10
10秒前
10秒前
shizy发布了新的文献求助10
11秒前
科研通AI5应助章鱼哥采纳,获得30
11秒前
13秒前
13秒前
coolkid应助CCCr采纳,获得10
14秒前
15秒前
小丫头子发布了新的文献求助10
16秒前
16秒前
苏苏发布了新的文献求助10
17秒前
绝妙DE嗡嗡虫完成签到,获得积分10
17秒前
萧然发布了新的文献求助10
19秒前
辣妹小熊发布了新的文献求助10
19秒前
热情孤菱发布了新的文献求助10
20秒前
呆头鹅发布了新的文献求助20
20秒前
21秒前
忘的澜发布了新的文献求助10
21秒前
15136780701完成签到 ,获得积分10
24秒前
肖123发布了新的文献求助10
27秒前
天天快乐应助天热采纳,获得30
27秒前
29秒前
愤怒的茉莉完成签到,获得积分10
29秒前
DDDD应助奋斗的青枫采纳,获得10
29秒前
Ancoes完成签到,获得积分10
30秒前
香蕉觅云应助友好的涵易采纳,获得10
31秒前
科研通AI5应助zjling采纳,获得10
32秒前
自转无风完成签到,获得积分10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842615
求助须知:如何正确求助?哪些是违规求助? 3384669
关于积分的说明 10536580
捐赠科研通 3105212
什么是DOI,文献DOI怎么找? 1710077
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110