PAIP 2020: Microsatellite instability prediction in colorectal cancer

微卫星不稳定性 结直肠癌 任务(项目管理) 阶段(地层学) 癌症 人工智能 医学 深度学习 肿瘤科 计算机科学 内科学 微卫星 生物 古生物学 生物化学 等位基因 管理 经济 基因
作者
Kyung Mo Kim,Kyoung Bun Lee,Sungduk Cho,Dong Un Kang,Seongkeun Park,Yunsook Kang,Hyun Jeong Kim,Gheeyoung Choe,Kyung Chul Moon,Kyu Sang Lee,Jeong Hwan Park,Choyeon Hong,Ramin Nateghi,Fattaneh Pourakpour,Xiyue Wang,Sen Yang,Seyed Alireza Fatemi Jahromi,Aliasghar Khani,Hwa-Rang Kim,Doo-Hyun Choi
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102886-102886 被引量:11
标识
DOI:10.1016/j.media.2023.102886
摘要

Microsatellite instability (MSI) refers to alterations in the length of simple repetitive genomic sequences. MSI status serves as a prognostic and predictive factor in colorectal cancer. The MSI-high status is a good prognostic factor in stage II/III cancer, and predicts a lack of benefit to adjuvant fluorouracil chemotherapy in stage II cancer but a good response to immunotherapy in stage IV cancer. Therefore, determining MSI status in patients with colorectal cancer is important for identifying the appropriate treatment protocol. In the Pathology Artificial Intelligence Platform (PAIP) 2020 challenge, artificial intelligence researchers were invited to predict MSI status based on colorectal cancer slide images. Participants were required to perform two tasks. The primary task was to classify a given slide image as belonging to either the MSI-high or the microsatellite-stable group. The second task was tumor area segmentation to avoid ties with the main task. A total of 210 of the 495 participants enrolled in the challenge downloaded the images, and 23 teams submitted their final results. Seven teams from the top 10 participants agreed to disclose their algorithms, most of which were convolutional neural network-based deep learning models, such as EfficientNet and UNet. The top-ranked system achieved the highest F1 score (0.9231). This paper summarizes the various methods used in the PAIP 2020 challenge. This paper supports the effectiveness of digital pathology for identifying the relationship between colorectal cancer and the MSI characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的荧完成签到 ,获得积分10
刚刚
Kirito应助sfsfes采纳,获得10
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
东溟渔夫发布了新的文献求助10
4秒前
mzhnx完成签到,获得积分10
5秒前
yeziyang完成签到,获得积分10
8秒前
8秒前
ding应助ardejiang采纳,获得10
8秒前
cc完成签到 ,获得积分10
9秒前
完美世界应助一区top采纳,获得10
9秒前
10秒前
Tao2023发布了新的文献求助10
10秒前
英姑应助快乐滑板采纳,获得10
11秒前
香蕉觅云应助苗条丹南采纳,获得10
11秒前
SciGPT应助哇塞采纳,获得10
12秒前
xueshudog完成签到,获得积分10
13秒前
14秒前
14秒前
西米完成签到,获得积分10
15秒前
坦率的尔丝完成签到,获得积分10
15秒前
猪猪侠完成签到,获得积分10
15秒前
16秒前
16秒前
卡机了完成签到,获得积分10
17秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846158
求助须知:如何正确求助?哪些是违规求助? 3388556
关于积分的说明 10553391
捐赠科研通 3109110
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824732
科研通“疑难数据库(出版商)”最低求助积分说明 774982