Challenges and opportunities towards silicon-based all-solid-state batteries

材料科学 阳极 纳米技术 电解质 锂(药物) 阴极 工程物理 快离子导体 固态 电气工程 光电子学 电极 工程类 内分泌学 物理化学 化学 医学
作者
Xiao Zhan,Miao Li,Sha Li,Xikun Pang,Fangqin Mao,Huiqun Wang,Zhefei Sun,Xiang Han,Bing Jiang,Yan‐Bing He,Meicheng Li,Qiaobao Zhang,Li Zhang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:61: 102875-102875 被引量:10
标识
DOI:10.1016/j.ensm.2023.102875
摘要

Silicon-based all-solid-state batteries (Si-based ASSBs) are recognized as the most promising alternatives to lithium-based (Li-based) ASSBs due to their low-cost, high-energy density, and reliable safety. In this review, we describe in detail the electro-chemo-mechanical behavior of Si anode during cycling, including the lithiation mechanism, volume expansion, dynamic solid-electrolyte-interphase (SEI) reconstruction of Si anode, the evolution and effect of stress in Si-based ASSBs as well. We also comprehensively summarize the development of all-solid-state electrolytes (ASSEs, e.g., LiPON, sulfide, garnet, and polymer) and structural designs of Si anodes (e.g., nano-structure and composite structure) in Si-based ASSBs. Moreover, we elaborate in detail the challenges and strategies towards high-voltage cathodes of Si-based ASSBs for further construction and application of full batteries. Hence, the significant research advancements of Si-based ASSBs from fundamentals to applications are presented in detail. Finally, we propose some rational suggestions and prospects for in-depth research on failure mechanisms and the further development of ASSEs and Si-based anodes in Si-based ASSBs. We hope that this review will provide valuable insights into failure mechanisms and advanced optimization strategies for the development of next-generation Si-based ASSBs, and bridge the gap between fundamental research and practical applications, particularly for the readers who are new to this field and have an interest in it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助淡竹结香采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
王爱芳完成签到 ,获得积分10
4秒前
muse999发布了新的文献求助10
5秒前
LIUC完成签到 ,获得积分10
6秒前
xin666发布了新的文献求助10
6秒前
CharlotteBlue应助JTHe采纳,获得50
6秒前
7秒前
bububu完成签到,获得积分10
7秒前
hyz发布了新的文献求助10
9秒前
10秒前
cuteee完成签到,获得积分20
10秒前
11秒前
调皮的媚颜完成签到 ,获得积分10
11秒前
12秒前
充电宝应助ns123采纳,获得10
12秒前
Ella发布了新的文献求助10
13秒前
wozuishuai12138完成签到,获得积分20
13秒前
乐乐应助皮芽子啊采纳,获得10
14秒前
陈秋发布了新的文献求助10
15秒前
Joeanna关注了科研通微信公众号
15秒前
111发布了新的文献求助10
16秒前
优美的谷完成签到,获得积分10
16秒前
Young发布了新的文献求助10
16秒前
Lylex应助夏天真棒采纳,获得10
17秒前
可爱的函函应助Oldworry采纳,获得10
17秒前
18秒前
18秒前
22秒前
22秒前
科研小菜鸡完成签到 ,获得积分10
24秒前
24秒前
24秒前
25秒前
Flex发布了新的文献求助10
25秒前
龙龙大忽悠完成签到 ,获得积分10
25秒前
28秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423071
求助须知:如何正确求助?哪些是违规求助? 2111934
关于积分的说明 5347540
捐赠科研通 1839409
什么是DOI,文献DOI怎么找? 915665
版权声明 561239
科研通“疑难数据库(出版商)”最低求助积分说明 489747