High-entropy electrolytes for practical lithium metal batteries

电解质 离子电导率 电化学 材料科学 电导率 溶剂化 阳极 电化学窗口 快离子导体 锂(药物) 化学工程 离子 无机化学 电极 化学 物理化学 有机化学 内分泌学 工程类 医学
作者
Sang Cheol Kim,Jingyang Wang,Rong Xu,Pu Zhang,Yuelang Chen,Zhuojun Huang,Yufei Yang,Zhiao Yu,Solomon T. Oyakhire,Wenbo Zhang,Louisa C. Greenburg,Mun Sek Kim,David Boyle,Philaphon Sayavong,Yusheng Ye,Jian Qin,Zhenan Bao,Yi Cui
出处
期刊:Nature Energy [Nature Portfolio]
卷期号:8 (8): 814-826 被引量:224
标识
DOI:10.1038/s41560-023-01280-1
摘要

Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high-entropy electrolytes. We find that, in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a twofold improvement in ionic conductivity compared with conventional weakly solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm−2) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622)||Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems. Electrolyte engineering has proven an effective approach to enhance the performance of lithium metal batteries. Here the authors propose a strategy by using multiple solvents in weakly solvating electrolytes—dubbed as high-entropy electrolytes—to improve the ionic conductivity while maintaining electrochemical stability, leading to high-performance batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡凡发布了新的文献求助10
刚刚
爆米花应助Frankyu采纳,获得10
1秒前
yoon发布了新的文献求助10
1秒前
何日寻完成签到,获得积分10
1秒前
阳佟擎苍发布了新的文献求助20
1秒前
2秒前
充电宝应助荔枝采纳,获得10
2秒前
3秒前
4秒前
vvvvvv发布了新的文献求助10
4秒前
4秒前
FashionBoy应助刘炳序采纳,获得10
4秒前
情怀应助刘炳序采纳,获得10
4秒前
大个应助刘炳序采纳,获得10
4秒前
桐桐应助刘炳序采纳,获得10
4秒前
酷波er应助刘炳序采纳,获得10
4秒前
研友_VZG7GZ应助刘炳序采纳,获得10
4秒前
yjf完成签到 ,获得积分10
5秒前
NexusExplorer应助清水采纳,获得10
6秒前
YBR完成签到 ,获得积分10
6秒前
xzy998应助科研醛采纳,获得20
8秒前
CodeCraft应助fash采纳,获得10
9秒前
Hello应助周小鱼采纳,获得10
9秒前
vvvvvv完成签到,获得积分10
10秒前
kyle完成签到 ,获得积分10
10秒前
123应助淡然的傲旋采纳,获得20
12秒前
13秒前
万幸鹿完成签到,获得积分10
13秒前
天天快乐应助木木采纳,获得10
13秒前
13秒前
玉玉完成签到,获得积分10
13秒前
Owen应助red采纳,获得10
14秒前
852应助汉域人采纳,获得10
14秒前
科研通AI5应助starry采纳,获得10
15秒前
15秒前
ding发布了新的文献求助10
16秒前
Owen应助Frankyu采纳,获得30
16秒前
mukou完成签到,获得积分10
17秒前
17秒前
苏素肃发布了新的文献求助10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186990
求助须知:如何正确求助?哪些是违规求助? 3722806
关于积分的说明 11730479
捐赠科研通 3400692
什么是DOI,文献DOI怎么找? 1866006
邀请新用户注册赠送积分活动 922923
科研通“疑难数据库(出版商)”最低求助积分说明 834290