Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems

计算机科学 强化学习 云计算 分布式计算 边缘计算 边缘设备 整数规划 任务(项目管理) 变压器 人工智能 实时计算 操作系统 算法 量子力学 物理 经济 电压 管理
作者
Jianyu Xiong,Peng Guo,Yi Wang,Xiangyin Meng,Jian Zhang,Linmao Qian,Zhenglin Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:118: 105710-105710 被引量:24
标识
DOI:10.1016/j.engappai.2022.105710
摘要

The rapid development of cloud computing and the Internet of Things (IoT) have facilitated near real-time optimization of the group distributed manufacturing systems. Currently, the most common technique to accomplish near-real-time optimization is cloud–edge cooperation for offloading optimization tasks. The tasks are partially offloaded to the cloud to be completed, and the remaining are kept at the edge. Due to the complexity of task offloading, such as capacity restrictions of cloud and edge computing resources, or task deadlines, unbalanced or insufficient tasks are offloaded to cloud and edge, causing time delay. To address the imbalance and insufficiency in the task offloading process, a mixed-integer programming model was developed to reduce the latency of task calculation. The task offloading problem is decomposed into two sub-problems: 1) Defining priorities for the tasks in near real-time. 2) Determining if the task is offloaded to the cloud. A multi-agent deep reinforcement learning with attention mechanism (MaDRLAM) framework is proposed to solve the two-step decision problem. The MaDRLAM framework consists of two agents, and each agent corresponds to a sub-problem. Each agent comprises an encoder and a decoder, and the two agents cooperate in devising an offloading strategy for the tasks. The Encoder and Decoder built for each agent are based on the Transformer structure. Unlike the traditional Transformer, we added the Pointer networks to the Transformer to solve the proposed decision problem. Besides, an improved multi-actor and single-critic strategy based on the REINFORCE algorithm is designed to train the proposed MaDRLAM. Finally, Extensive computational experiments are conducted on instances with a varying number of tasks, different task data sizes, and different cloud computing capacities. Computational results show that the proposed framework can find a solution with a GAP value of less than 1% within 1 s for each instance. The proposed framework is competitive in both solution accuracy and solution time compared with other offloading strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Bacon发布了新的文献求助10
2秒前
2秒前
2秒前
cdercder应助loathebm采纳,获得10
2秒前
2秒前
2秒前
冉冉完成签到,获得积分10
3秒前
4秒前
4秒前
YOYOYO举报红叶求助涉嫌违规
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
login发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
陈老师耶发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
舒物发布了新的文献求助10
10秒前
10秒前
11秒前
科研通AI5应助文艺乐蕊采纳,获得10
11秒前
虚幻幻翠完成签到,获得积分10
11秒前
11秒前
包子发布了新的文献求助10
12秒前
12秒前
不将就完成签到,获得积分10
12秒前
13秒前
小羽完成签到 ,获得积分10
13秒前
U123456发布了新的文献求助10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775